Citation: Wang Zhihui, Zhang Zhenfeng, Liu Yangang, Zhang Wanbin. Development of the Asymmetric Hydrogenation of Enol Esters[J]. Chinese Journal of Organic Chemistry, ;2016, 36(3): 447-459. doi: 10.6023/cjoc201512009 shu

Development of the Asymmetric Hydrogenation of Enol Esters

  • Corresponding author: Zhang Zhenfeng,  Zhang Wanbin, wanbin@sjtu.edu.cn
  • Received Date: 7 December 2015
    Revised Date: 6 January 2016

    Fund Project: the Science and Technology Commission of Shanghai Municipality 14XD1402300the National Natural Science Foundation of China 21572131

Figures(10)

  • Chiral alcohols are an important class of compounds and possess a broad array of applications, thus their asymmetric preparation is an important area of research in the field of organic synthesis. Amongst methodologies for the preparation of such compounds, catalytic asymmetric hydrogenation has gained widespread interest due to its efficiency, environmentally friendliness and economic advantages, and is gradually becoming a technology with great potential for the industrial preparation of chiral alcohols. This review provides the first overview for the catalytic asymmetric hydrogenation of enol esters for the synthesis of chiral alcohols. A comprehensive and up-to-date introduction are given for a number of different substrates. A thorough analysis is provided concerning the advantages and disadvantages of different chiral ligands and their transition-metal complexes. Finally, a brief discussion relating to developments and potential areas of further research concerning new substrates, new ligands and new catalytic metals, is presented.
  • 加载中
    1. [1]

      de Vries, J. G.; Elsevier, C. J. Handbook of Homogeneous Hydrogenation, Wiley-VCH, Weinheim, Germany, 2007.
      (b) Ma, Y.; Zhang, Y. J.; Zhang, W. Chin. J. Org. Chem. 2007, 27, 289 (in Chinese). (马元辉, 张勇健, 张万斌, 有机化学, 2007, 27, 289.)
      (c) Blaser, H.-U.; Federsel, H.-J. Asymmetric Catalysis on Industrial Scale, 2nd ed., Wiley-VCH, Weinheim, Germany, 2010.
      (d) Xie, J.-H.; Zhou, Q.-L. Acta Chim. Sinica 2012, 70, 1427 (in Chinese). (谢建华, 周其林, 化学学报, 2012, 70, 1427.)
      (e) Etayo, P.; Vidal-Ferran, A. Chem. Soc. Rev. 2013, 42, 728.(f) Wang, Y.; Zhang, Z.; Zhang, W. Chin. J. Org. Chem. 2015, 35, 528 (in Chinese).
      (王英杰, 张振锋, 张万斌, 有机化学, 2015, 35, 528.)

    2. [2]

      Noyori, R.; Ohkuma, T. Angew. Chem., Int. Ed. 2001, 40, 40.
      (b) Klingler, F. D. Acc. Chem. Res. 2007, 40, 1367.

    3. [3]

      Fryzuk, M. D.; Bosnich, B. J. Am. Chem. Soc. 1978, 100, 5491.  doi: 10.1021/ja00485a037

    4. [4]

      Koenig, K. E.; Bachman, G. L.; Vineyard, B. D. J. Org. Chem. 1980, 45, 2362.  doi: 10.1021/jo01300a019

    5. [5]

      Brown, J. M.; Murrer, B. A. J. Chem. Soc., Perkin Trans. 2 1982, 489.

    6. [6]

      Burk, M. J. J. Am. Chem. Soc. 1991, 113, 8518.  doi: 10.1021/ja00022a047

    7. [7]

      Lotz, M.; Ireland, T.; Perea, J. J. A.; Knochel, P. Tetrahedron: Asymmetry 1999, 10, 1839.  doi: 10.1016/S0957-4166(99)00182-2

    8. [8]

      Ireland, T.; Tappe, K.; Grossheimann, G.; Knochel, P. Chem. Eur. J. 2002, 8, 843.
      (b) Lotz, M.; Polborn, K.; Knochel, P. Angew. Chem., Int. Ed. 2002, 41, 4708.

    9. [9]

      Gavrilov, K. N.; Benetsky, E. B.; Boyko, V. E.; Rastorguev, E. A.; Davankov, V. A.; Schäffner, B.; Börner, A. Chirality 2010, 22, 844.  doi: 10.1002/chir.20845

    10. [10]

      Schmidt, U.; Langner, J.; Kirschbaum, B.; Braun, C. Synthesis 1994, 1138.

    11. [11]

      Lüttenberg, S.; Ta, T. D.; von der Heyden, J.; Scherkenberk, J. Eur. J. Org. Chem. 2013, 1824.

    12. [12]

      Stephan, M.; Šterk, D.; Mohar, B. Adv. Synth. Catal. 2009, 351, 2779.
      (b) Zupančič, B.; Mohar, B.; Stephan, M. Org. Lett. 2010, 12, 1296.
      (c) Zupančič, B.; Mohar, B.; Stephan, M. Org. Lett. 2010, 12, 3022.

    13. [13]

      Burk, M. J.; Kalberg, C. S.; Pizzano, A. J. Am. Chem. Soc. 1998, 120, 4345.  doi: 10.1021/ja974278b

    14. [14]

      Han, X.; Jiang, X.-J.; Civiello, R. L.; Degnan, A. P.; Chaturvedula, P. V.; Macor, J. E.; Dubowchik, G. M. J. Org. Chem. 2009, 74, 3993.  doi: 10.1021/jo900368k

    15. [15]

      Liu, Y.; Sandoval, C. A.; Yamaguchi, Y.; Zhang, X.; Wang, Z.; Kato, K.; Ding, K. J. Am. Chem. Soc. 2006, 128, 14212.  doi: 10.1021/ja063350f

    16. [16]

      Dong, C.; Wang, Y.; Zhu, Y. Z. Bioorg. Med. Chem. 2009, 17, 3499.
      (b) Pan, L.-L.; Wang, J.; Jia, Y.-L.; Zheng, H.-M.; Wang, Y.; Zhu, Y.-Z. Int. J. Mol. Sci. 2015, 16, 628.

    17. [17]

      Wang, Q.; Huang, W.; Yuan, H.; Cai, Q.; Chen, L.; Lv, H.; Zhang, X. J. Am. Chem. Soc. 2014, 136, 16120.  doi: 10.1021/ja509005e

    18. [18]

      Boaz, N. W. Tetrahedron Lett. 1998, 39, 5505.  doi: 10.1016/S0040-4039(98)00730-8

    19. [19]

      Li, W.; Zhang, Z.; Xiao, D.; Zhang, X. J. Org. Chem. 2000, 65, 3489.  doi: 10.1021/jo000066c

    20. [20]

      Tang, W.; Liu, D.; Zhang, X. Org. Lett. 2003, 5, 205.  doi: 10.1021/ol0272592

    21. [21]

      Liu, D.; Zhang, X. Eur. J. Org. Chem. 2005, 646.

    22. [22]

      Zhang, X.; Huang, K.; Hou, G.; Cao, B.; Zhang, X. Angew. Chem., Int. Ed. 2010, 49, 6421.  doi: 10.1002/anie.201002990

    23. [23]

      Pullmann, T.; Engendahl, B.; Zhang, Z.; Hölscher, M.; Zanotti-Gerosa, A.; Dyke, A.; Franciò, G.; Leitner, W. Chem. Eur. J. 2010, 16, 7517.  doi: 10.1002/chem.201000063

    24. [24]

      Knorad, T. M.; Schmitz, P.; Leitner, W.; Franciò, G. Chem. Eur. J. 2013, 19, 13299.  doi: 10.1002/chem.201303066

    25. [25]

      Robert, T.; Abiri, Z.; Sandee, A. J.; Schmalz, H.-G.; Reek, J. N. H. Tetrahedron: Asymmetry 2010, 21, 2671.  doi: 10.1016/j.tetasy.2010.10.026

    26. [26]

      Etayo, P.; Núñez-Rico, J. L.; Fernández-Pérez, H.; Vidal-Ferran, A. Chem. Eur. J. 2011, 17, 13978.
      (b) Etayo, P.; Núñez-Rico, J. L.; Vidal-Ferran, A. Organometallics 2011, 30, 6718.
      (c) Núñez-Rico, J. L.; Etayo, P.; Fernández-Pérez, H.; Vidal-Ferran, A. Adv. Synth. Catal. 2012, 354, 3025.

    27. [27]

      Fernández-Pérez, H.; Benet-Buchholz, J.; Vidal-Ferran, A. Org. Lett. 2013, 15, 3634.
      (b) Fernández-Pérez, H.; Benet-Buchholz, J.; Vidal-Ferran, A. Chem. Eur. J. 2014, 20, 15375.
      (c). Lao, J. R. Benet-Buchholz, J.; Vidal-Ferran, A. Organometallics 2014, 33, 2960.

    28. [28]

      Kleman, P.; González-Liste, P. J.; García-Garrido, S. E.; Cadierno, V.; Pizzano, A. Chem. Eur. J. 2013, 19, 16209.
      (b) Kleman, P.; González-Liste, P. J.; García-Garrido, S. E.; Cadierno, V.; Pizzano, A. ACS. Catal. 2014, 4, 4398.

    29. [29]

      Reetz, M. T.; Goossen, L. J.; Meiswinkel, A.; Paetzold, J.; Jensen, J. F. Org. Lett. 2003, 5, 3099.  doi: 10.1021/ol035076p

    30. [30]

      Mamone, P.; Grünberg, M. F.; Fromm, A.; Khan, B. A.; Gooβen, L. J. Org. Lett. 2012, 14, 3716.  doi: 10.1021/ol301563g

    31. [31]

      Alegre, S.; Alberico, E.; Pàmies, O.; Diéguez, M. Tetrahedron: Asymmetry 2014, 25, 258.  doi: 10.1016/j.tetasy.2013.12.010

    32. [32]

      Jiang, X.-B.; van den Berg, M.; Minnaard, A. J.; Feringa, B. L.; de Vries, J. G. Tetrahedron: Asymmetry 2004, 15, 2223.  doi: 10.1016/j.tetasy.2004.05.002

    33. [33]

      Panella, L.; Feringa, B. L.; de Vries, J. G.; Minnaard, A. J. Org. Lett. 2005, 7, 4177.  doi: 10.1021/ol051559c

    34. [34]

      Enthaler, S.; Erre, G.; Junge, K.; Michalik, D.; Spannenberg, A.; Marras, F.; Gladiali, S.; Beller, M. Tetrahedron: Asymmetry 2007, 18, 1288.  doi: 10.1016/j.tetasy.2007.06.001

    35. [35]

      Liu, Y.; Wang, Z.; Ding, K. Tetrahedron 2012, 68, 7581.  doi: 10.1016/j.tet.2012.05.096

    36. [36]

      Schmitz, C.; Leiter, W.; Franciò, G. Eur. J. Org. Chem. 2015, 2889.

    37. [37]

      Ohta, T.; Miyake, T.; Seido, N.; Kumobayashi, H.; Takaya, H. J. Org. Chem. 1995, 60, 357.  doi: 10.1021/jo00107a014

    38. [38]

      Kuroki, Y.; Asada, D.; Sakamaki, Y.; Iseki, K. Tetrahedron Lett. 2000, 41, 4603.  doi: 10.1016/S0040-4039(00)00643-2

    39. [39]

      Wu, S.; Wang, W.; Tang, W.; Lin, M.; Zhang, X. Org. Lett. 2002, 4, 4495.  doi: 10.1021/ol027010k

    40. [40]

      Qiu, L.; Wu, J.; Chan, S.; Au-Yeung, T. T.-L.; Ji, J.-X.; Guo, R.; Pai, C.-C.; Zhou, Z.; Li, X.; Fan, Q.-H.; Chan, A. S. C. Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 5815.  doi: 10.1073/pnas.0307774101

    41. [41]

      Le Gendre, P.; Braun, T.; Bruneau, C.; Dixneuf, P. H. J. Org. Chem. 1996, 61, 8453.  doi: 10.1021/jo961413e

    42. [42]

      Fehr, M. J.; Consiglio, G.; Scalone, M.; Schmid, R. J. Org. Chem. 1999, 64, 5768.  doi: 10.1021/jo982215l

    43. [43]

      Broger, E. A.; Burkart, W.; Hennig, M.; Scalone, M.; Schmid, R. Tetrahedron: Asymmetry 1998, 9, 4043.  doi: 10.1016/S0957-4166(98)00423-6

    44. [44]

      Jiang, Q; Xiao, D; Zhang, Z; Cao, P; Zhang, X. Angew. Chem., Int. Ed. 1999, 38, 516.  doi: 10.1002/(ISSN)1521-3773

    45. [45]

      Pignataro, L.; Bovio, C.; Civera, M.; Piarulli, U.; Gennari, C. Chem. Eur. J. 2012, 18, 10368.  doi: 10.1002/chem.201201032

    46. [46]

      Burk, M. J.; Stammers, T. A.; Straub, J. A. Org. Lett. 1999, 1, 387.  doi: 10.1021/ol9906099

    47. [47]

      Liu, H.; Zhou, Y.-G.; Yu, Z.-K.; Xiao, W.-J.; Liu, S.-H.; He, H.-W. Tetrahedron 2006, 60, 11207.

    48. [48]

      Gridnev, I. D.; Higashi, N.; Imamoto, T. J. Am. Chem. Soc. 2001, 123, 4631.
      (b). Gridnev, I. D.; Higashi, N.; Imamoto, T. Organometallics 2001, 20, 4542.
      (c) Gridnev, I. D.; Yasutake, M.; Imamoto, T.; Beletskaya, I. P. Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 5385.
      (d) Imamoto, T.; Yashio, K.; Crépy, K. V. L.; Katagiri, K.; Takahashi, H.; Kouchi, M.; Gridnev, I. D. Organometallics 2006, 25, 908.
      (e). Gridnev, I. D.; Imamoto, T.; Hoge, G.; Kouchi, M.; Takahashi, H. J. Am. Chem. Soc. 2008, 130, 2560.
      (f). Tamura, K.; Sugiya, M.; Yoshida, K.; Yanagisawa, A.; Imamoto, T. Org. Lett. 2010, 12, 4400.

    49. [49]

      Rubio, M.; Suárez, A.; Álvarez, E.; Pizzano, A. Chem. Commun. 2005, 628.
      (b) Rubio, M.; Vargas, S.; Suárez, A.; Álvarez, E.; Pizzano, A. Chem. Eur. J. 2007, 13, 1821.

    50. [50]

      Wassenaar, J.; Reek, J. N. H. J. Org. Chem. 2009, 74, 8403.
      (b) Wassenaar, J.; Kuil, M.; Lutz, M.; Spek, A. L.; Reek, J. N. H. Chem. Eur. J. 2010, 16, 6509.

    51. [51]

      Wang, D.-Y.; Hu, X.-P.; Huang, J.-D.; Deng, J.; Yu, S.-B.; Duan, Z.-C.; Xu, X.-F.; Zheng, Z. Angew. Chem., Int. Ed. 2007, 46, 7810.
      (b) Qiu, M.; Hu, X.-P.; Huang, J.-D.; Wang, D.-Y.; Deng, J.; Yu, S.-B.; Duan, Z.-C.; Zheng, Z. Adv. Synth. Catal. 2008, 350, 2683.
      (c) Wang, D.-Y.; Huang, J.-D.; Hu, X.-P.; Deng, J.; Yu, S.-B.; Duan, Z.-C.; Zheng, Z. J. Org. Chem. 2008, 73, 2011.

    52. [52]

      Fernández-Pérez, H.; Pericàs, M. A.; Vidal-Ferran, A. Adv. Synth. Catal. 2008, 350, 1984.  doi: 10.1002/adsc.v350:13

    53. [53]

      Vargas, S.; Suárez, A.; Álvarez, E.; Pizzano, A. Chem. Eur. J. 2008, 14, 9856.
      (b) Chávez, M. Á.; Vargas, S.; Suárez, A.; Álvarez, E.; Pizzano, A. Adv. Synth. Catal. 2011, 353, 2775.

    54. [54]

      Konno, T.; Shimizu, K.; Ogata, K.; Fukuzawa, S.-I. J. Org. Chem. 2012, 77, 3318.  doi: 10.1021/jo300129m

    55. [55]

      Sun, T.; Zhang, X. Adv. Synth. Catal. 2012, 354, 3211.  doi: 10.1002/adsc.201200224

  • 加载中
    1. [1]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    2. [2]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    3. [3]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    4. [4]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    5. [5]

      Qianwen HanTenglong ZhuQiuqiu LüMahong YuQin Zhong . Performance and Electrochemical Asymmetry Optimization of Hydrogen Electrode Supported Reversible Solid Oxide Cell. Acta Physico-Chimica Sinica, 2025, 41(1): 100005-0. doi: 10.3866/PKU.WHXB202309037

    6. [6]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    7. [7]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    8. [8]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    9. [9]

      Dongheng WANGSi LIShuangquan ZANG . Construction of chiral alkynyl silver chains and modulation of chiral optical properties. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 131-140. doi: 10.11862/CJIC.20240379

    10. [10]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    11. [11]

      Qiuting Zhang Fan Wu Jin Liu Zian Lin . Chromatographic Stationary Phase and Chiral Separation Using Frame Materials. University Chemistry, 2025, 40(4): 291-298. doi: 10.12461/PKU.DXHX202405174

    12. [12]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    13. [13]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    14. [14]

      Haiying Wang Andrew C.-H. Sue . How to Visually Identify Homochiral Crystals. University Chemistry, 2024, 39(3): 78-85. doi: 10.3866/PKU.DXHX202309004

    15. [15]

      Keying Qu Jie Li Ziqiu Lai Kai Chen . Unveiling the Mystery of Chirality from Tartaric Acid. University Chemistry, 2024, 39(9): 369-378. doi: 10.12461/PKU.DXHX202310091

    16. [16]

      Guilan He Yaofeng Yuan . 手性二茂铁双膦配体Xyliphos的合成及应用. University Chemistry, 2025, 40(8): 130-137. doi: 10.12461/PKU.DXHX202409122

    17. [17]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    18. [18]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    19. [19]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    20. [20]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

Metrics
  • PDF Downloads(0)
  • Abstract views(1414)
  • HTML views(222)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return