Citation: Chen Huajie. Recent Advances in High-Mobility Polymeric Semiconductor Materials[J]. Chinese Journal of Organic Chemistry, ;2016, 36(3): 460-479. doi: 10.6023/cjoc201511026 shu

Recent Advances in High-Mobility Polymeric Semiconductor Materials

  • Corresponding author: Chen Huajie, chenhjoe@163.com
  • Received Date: 15 November 2015
    Revised Date: 30 December 2015

    Fund Project: the Natural Science Foundation of Hunan Province 2015JJ3122the China Postdoctoral Science Foundation 2015T80877the National Natural Science Foundation of China 51403177the China Postdoctoral Science Foundation 2014M552141the Science and Technology Planning Project of Hunan Province 2015RS4025

Figures(9)

  • Significant progress has been made in polymeric semiconductors and their organic field-effect transistors (OFETs) since 1980s. To date, hundreds of polymeric semiconductors have been reported and used for OFETs. The hole mobility above 36.3 cm2·V-1·s-1 has been achieved, which can be competitive with organic small semiconductors and even amorphous silicon. In this review, the recent progress in high-mobility polymeric semiconductor materials has been summarized from the perspective of design, synthesis, and OFET devices performance. Moreover, the recent developments are systematically summarized and analyzed according to different types of polymeric semiconductors, including p-type, n-type, and ambipolar polymeric semiconductors. The analysis about the relationship among the molecular structure-aggregation structure-OFET devices performance may guide the rational molecule design in the polymeric semiconductor materials with excellently comprehensive performance in the future.
  • 加载中
    1. [1]

      Xia, X.; Lei, T.; Pei, J.; Liu, C. J. Chin. J. Org. Chem. 2014, 34, 1905 (in Chinese).  doi: 10.6023/cjoc201403052
       

    2. [2]

      Wan, G.; Fu, Y. A.; Guo, J. N.; Xiang, Z. H. Acta Chim. Sinica 2015, 73, 557 (in Chinese).  doi: 10.6023/A15020106

    3. [3]

      Wang, C.; Dong, H.; Hu, W.; Liu, Y.; Zhu, D. Chem. Rev. 2012, 112, 2208.  doi: 10.1021/cr100380z

    4. [4]

      Guo, X.; Facchetti, A.; Marks, T. J. Chem. Rev. 2014, 114, 8943.  doi: 10.1021/cr500225d

    5. [5]

      Tsumura, A.; Koezuka, H.; Ando, T. Appl. Phys. Lett. 1986, 49, 1210.  doi: 10.1063/1.97417

    6. [6]

      Tang, C. W. Appl. Phys. Lett. 1986, 48, 183.  doi: 10.1063/1.96937

    7. [7]

      Tang, C. W.; Vanslyke, S. A. Appl. Phys. Lett. 1987, 51, 913.  doi: 10.1063/1.98799

    8. [8]

      Sang, M.; Cao, S. Z.; Lai, W. Y.; Huang, W. Acta Chim. Sinica 2015, 73, 770 (in Chinese).

    9. [9]

      Ong, B. S.; Wu, Y.; Liu, P.; Gardner, S. J. Am. Chem. Soc. 2004, 126, 3378.  doi: 10.1021/ja039772w

    10. [10]

      Chabinyc, M. L.; Endicott, F.; Vogt, B. D.; DeLongchamp, D. M.; Lin, E. K.; Wu, Y.; Liu, P.; Ong, B. S. Appl. Phys. Lett. 2006, 88, 113514/1.  doi: 10.1063/1.2181206

    11. [11]

      McCulloch, I.; Heeney, M.; Bailey, C.; Genevicius, K.; MacDonald, I.; Shkunov, M.; Sparrowe, D.; Tierney, S.; Wagner, R.; Zhang, W.; Chabinyc, M. L.; Kline, R. J.; McGehee, M. D.; Toney, M. F. Nat. Mater. 2006, 5, 328.  doi: 10.1038/nmat1612

    12. [12]

      Kim, D. H.; Lee, B. L.; Moon, H.; Kang, H. M.; Jeong, E. J.; Park, J.; Han, K. M.; Lee, S.; Yoo, B. W.; Koo, B. W.; Kim, J. Y.; Lee, W. H.; Cho, K.; Becerril, H. A.; Bao, Z. N. J. Am. Chem. Soc. 2009, 131, 6124.  doi: 10.1021/ja8095569

    13. [13]

      Lim, B.; Baeg, K. J.; Jeong, H. G.; Jo, J.; Kim, H.; Park, J. W.; Noh, Y. Y.; Vak, D.; Park, J. H.; Park, J. W.; Kim, D. Y. Adv. Mater. 2009, 21, 2808.  doi: 10.1002/adma.200803700

    14. [14]

      Kim, J.; Lim, B.; Baeg, K. J.; Noh, Y. Y.; Khim, D.; Jeong, H. G.; Yun, J. M.; Kim, D. Y. Chem. Mater. 2011, 23, 4663.  doi: 10.1021/cm2021802

    15. [15]

      Fei, Z.; Pattanasattayavong, P.; Han, Y.; Schroeder, B.; Yan, F.; Kline, R.; Anthopoulos, T.; Heeney, M. J. Am. Chem. Soc. 2014, 136, 15154.  doi: 10.1021/ja508798s

    16. [16]

      Jang, S.; Kim, I.; Kim, J.; Khim, D.; Jung, E.; Kang, B.; Lim, B.; Kim, Y.; Jang, Y.; Cho, K.; Kim, D. Chem. Mater. 2014, 26, 6907.  doi: 10.1021/cm502486n

    17. [17]

      Zhang, M.; Tsao, H. T.; Pisula, W.; Yang, C.; Mishra, A. K.; Müllen, K. J. Am. Chem. Soc. 2007, 129, 3472.  doi: 10.1021/ja0683537

    18. [18]

      Tsao, H. N.; Cho, D. M.; Park, I.; Hansen, M. R.; Mavrinskiy, A.; Yoon, D. Y.; Graf, R.; Pisula, W.; Spiess H. W.; Müllen, K. J. Am. Chem. Soc. 2011, 133, 2605.  doi: 10.1021/ja108861q

    19. [19]

      Zhang, W.; Smith, J.; Watkins, S. E.; Gysel, R.; McGehee, M.; Salleo, A.; Kirkpatrick, J.; Ashraf, S.; Anthopoulos, T.; Heeney, M.; McCulloch, I. J. Am. Chem. Soc. 2010, 132, 11437.  doi: 10.1021/ja1049324

    20. [20]

      Zhang, X.; Bronstein, H.; Kronemeijer, A. J.; Smith, J.; Kim, Y.; Kline, R. J.; Richter, L. J.; Anthopoulos, T. D.; Sirringhaus, H.; Song, K.; Heeney, M.; Zhang, W.; McCulloch, I.; Delongchamp, D. M. Nat. Commun. 2013, 4, 2238.

    21. [21]

      Zhang, W.; Han, Y.; Zhu, X.; Fei, Z.; Feng, Y.; Treat, N.; Faber, H.; Stingelin, N.; McCulloch, I.; Anthopoulos, T.; Heeney, M. Adv. Mater. 2015, DOI: 10.1002/adma.201504092.  doi: 10.1002/adma.201504092

    22. [22]

      Ying, L.; Hsu, B. B. Y.; Zhan, H.; Welch, G. C.; Zalar, P.; Perez, L. A.; Kramer, E. J.; Nguyen, T. Q.; Heeger, A. J.; Wong, W. Y.; Bazan, G. C. J. Am. Chem. Soc. 2011, 133, 18538.  doi: 10.1021/ja207543g

    23. [23]

      Tseng, H. R.; Ying, L.; Hsu, B. B.; Perez, L. A.; Takacs, C. J.; Bazan, G. C.; Heeger, A. J. Nano Lett. 2012, 12, 6353.  doi: 10.1021/nl303612z

    24. [24]

      Tseng, H.-R.; Phan, H.; Luo, C.; Wang, M.; Perez, L. A.; Patel, S. N.; Ying, L.; Kramer, E. J.; Nguyen, T.-Q.; Bazan, G. C.; Heeger, A. J. Adv. Mater. 2014, 26, 2993.  doi: 10.1002/adma.201305084

    25. [25]

      Luo, C.; Kyaw, A. K. K.; Perez, L. A.; Patel, S.; Wang, M.; Grimm, B.; Bazan, G. C.; Kramer, E. J.; Heeger, A. J. Nano Lett. 2014, 14, 2764.  doi: 10.1021/nl500758w

    26. [26]

      Fan, J.; Yuen, J. D.; Cui, W. B.; Seifter, J.; Mohebbi, A. R.; Wang, M.; Zhou, H.; Heeger, A. J.; Wudl, F. Adv. Mater. 2012, 24, 6164.  doi: 10.1002/adma.v24.46

    27. [27]

      Nketia-Yawson, B.; Lee, H. S.; Seo, D.; Yoon, Y.; Park, W. T.; Kwak, K.; Son, H. J.; Kim, B. S.; Noh, Y. Y. Adv. Mater. 2015, 27, 3045.  doi: 10.1002/adma.201500233

    28. [28]

      Wang, E.; Mammo, W.; Andersson, M. R. Adv. Mater. 2014, 26, 1801.  doi: 10.1002/adma.v26.12

    29. [29]

      Stalder, R.; Mei, J.; Reynolds, J. R. Macromolecules 2010, 43, 8348.  doi: 10.1021/ma1018445

    30. [30]

      Lei, T.; Cao, Y.; Fan, Y.; Liu, C.; Yuan, S.; Pei, J. J. Am. Chem. Soc. 2011, 133, 6099.  doi: 10.1021/ja111066r

    31. [31]

      Lei, T.; Dou, J.; Pei, J. Adv. Mater. 2012, 24, 6457.  doi: 10.1002/adma.v24.48

    32. [32]

      Mei, J.; Kim, D. H.; Ayzner, A. L.; Toney, M. F.; Bao, Z. J. Am. Chem. Soc. 2011, 133, 20130.  doi: 10.1021/ja209328m

    33. [33]

      Mei, J.; Wu, H.; Diao, Y.; Appleton, A.; Wang, H.; Zhou, Y.; Lee, W. Y.; Kurosawa, T.; Chen, W.; Bao, Z. Adv. Funct. Mater. 2015, 25, 3455.  doi: 10.1002/adfm.v25.23

    34. [34]

      Ashraf, R. S.; Kronemeijer, A. J.; James, D. I.; Sirringhaus, H.; McCulloch, I. Chem. Commun. 2012, 48, 3939.  doi: 10.1039/c2cc30169e

    35. [35]

      Kim, G.; Kang, S. J.; Dutta, G. K.; Han, Y. K.; Shin, T. J.; Noh, Y. Y.; Yang, C. D. J. Am. Chem. Soc. 2014, 136, 9477.  doi: 10.1021/ja504537v

    36. [36]

      Cao, Y.; Yuan, J.; Zhou, X.; Wang, X.; Zhuang, F.; Wang, J.; Pei, J. Chem. Commun. 2015, 51, 10514.  doi: 10.1039/C5CC02026C

    37. [37]

      Shi, S.; Xie, X.; Gao, C.; Shi, K.; Chen, S.; Yu, G.; Guo, L.; Li, X.; Wang, H. Macromolecules 2014, 47, 616.  doi: 10.1021/ma402107n

    38. [38]

      Shi, S.; Shi, K.; Yu, G.; Li, X.; Wang, H. RSC Adv. 2015, 5, 70319.  doi: 10.1039/C5RA14721B

    39. [39]

      Nielsen, C. B.; Turbiez, M.; McCulloch, I. Adv. Mater. 2013, 25, 1859.  doi: 10.1002/adma.v25.13

    40. [40]

      Lee, O. P.; Yiu, A. T.; Beaujuge, P. M.; Woo, C. H.; Holcombe, T. W.; Millstone, J. E.; Douglas, J. D.; Chen, M. S.; Fréchet, J. M. J. Adv. Mater. 2011, 23, 5359.  doi: 10.1002/adma.201103177

    41. [41]

      Bürgi, L.; Turbiez, M.; Pfeiffer, R.; Bienewald, F.; Kirner, H. J.; Winnewisser, C. Adv. Mater. 2008, 20, 2217.  doi: 10.1002/(ISSN)1521-4095

    42. [42]

      Li, Y.; Sonar, P.; Singh, S. P.; Soh, M. S.; Meurs, M.; Tan, J. J. Am. Chem. Soc. 2011, 133, 2198.  doi: 10.1021/ja1085996

    43. [43]

      Ha, J. S.; Kim, K. H.; Choi, D. H. J. Am. Chem. Soc. 2011, 133, 10364.  doi: 10.1021/ja203189h

    44. [44]

      Li, Y.; Singh, S. P.; Sonar, P. Adv. Mater. 2010, 22, 4862.  doi: 10.1002/adma.201002313

    45. [45]

      Li, J.; Zhao, Y.; Tan, H.; Guo, Y.; Di, C.; Yu, G.; Liu, Y.; Lin, M.; Lim, S. H.; Zhou, Y.; Su, H.; Ong, B. S. Sci. Rep. 2012, 2, 754.

    46. [46]

      Bronstein, H.; Chen, Z.; Ashraf, R. S.; Zhang, W.; Du, J.; Durrant, J. R.; Tuladhar, P. S.; Song, K.; Watkins, S. E.; Geerts, Y.; Wienk, M. M.; Janssen, R. A. J.; Anthopoulos, T.; Sirringhaus, H.; Heeney, M.; McCulloch, I. J. Am. Chem. Soc. 2011, 133, 3272.  doi: 10.1021/ja110619k

    47. [47]

      Chen, H.; Guo, Y.; Yu, G.; Zhao, Y.; Zhang, J.; Gao, D.; Liu, H.; Liu, Y. Adv. Mater. 2012, 24, 4618.  doi: 10.1002/adma.v24.34

    48. [48]

      Liu, X.; Guo, Y.; Ma, Y.; Chen, H.; Mao, Z.; Wang, H.; Yu, G.; Liu, Y. Adv. Mater. 2014, 26, 3631.  doi: 10.1002/adma.v26.22

    49. [49]

      Kang, I.; An, T. K.; Hong, J.; Yun, H. J.; Kim, R.; Chung, D. S.; Park, C. E.; Kim, Y. H.; Kwon, S. K. Adv. Mater. 2013, 25, 524.  doi: 10.1002/adma.201202867

    50. [50]

      Kang, I.; Yun, H. J.; Chung, D. S.; Kwon, S. K; Kim, Y. H. J. Am. Chem. Soc. 2013, 135, 14896.  doi: 10.1021/ja405112s

    51. [51]

      Back, J. Y.; Yu, H.; Song, I.; Kang, I.; Ahn, H.; Shin, T. J.; Kwon, S. K.; Oh, J. H.; Kim, Y. H. Chem. Mater. 2015, 27, 1732.  doi: 10.1021/cm504545e

    52. [52]

      Shin, J.; Hong, T. R.; Lee, T. W.; Kim, A.; Kim, Y. H.; Cho, M. J.; Choi, D. H. Adv. Mater. 2014, 26, 6031.  doi: 10.1002/adma.201401179

    53. [53]

      Yun, H. J.; Lee, G.; Chung, D. S.; Kim, Y. H.; Kwon, S. K. Adv. Mater. 2014, 26, 6612.  doi: 10.1002/adma.v26.38

    54. [54]

      Choi, H. H.; Baek J. Y.; Song, E.; Kang, B.; Cho, K.; Kwon, S. K.; Kim, Y. H. Adv. Mater. 2015, 27, 3626.  doi: 10.1002/adma.v27.24

    55. [55]

      Zaumseil, J.; Sirringhaus, H. Chem. Rev. 2007, 107, 1296.  doi: 10.1021/cr0501543

    56. [56]

      Usta., H.; Facchetti, A.; Marks, T. J. Acc. Chem. Res. 2011, 44, 501.  doi: 10.1021/ar200006r

    57. [57]

      Tang, M.; Bao, Z. Chem. Mater. 2011, 23, 446.  doi: 10.1021/cm102182x

    58. [58]

      Babel, A.; Jenekhe, S. A. J. Am. Chem. Soc. 2003, 125, 13656.  doi: 10.1021/ja0371810

    59. [59]

      Briseno, A. L.; Mannsfeld, S. C. B.; Shamberger, P. J.; Ohuchi, F. S.; Bao, Z.; Jenekhe, S. A.; Xia, Y. Chem. Mater. 2008, 20, 4712.  doi: 10.1021/cm8010265

    60. [60]

      Zhan, X.; Tan, Z.; Domercq, B.; An, Z.; Zhang, X.; Barlow, S.; Li, Y.; Zhu, D.; Kippelen, B.; Marder, S. R. J. Am. Chem. Soc. 2007, 129, 7246.  doi: 10.1021/ja071760d

    61. [61]

      Zhao, X.; Ma, L.; Zhang, L.; Wen, Y.; Chen, J.; Shuai, Z.; Liu, Y.; Zhan, X. Macromolecules 2013, 46, 2152.  doi: 10.1021/ma302428x

    62. [62]

      Chen, Z.; Zheng, Y.; Yan, H.; Facchetti, A. J. Am. Chem. Soc. 2008, 131, 8.

    63. [63]

      Yan, H.; Chen, Z.; Zheng, Y.; Newman, C.; Quinn, J. R.; Dötz, F.; Kastler, M.; Facchetti, A. Nature 2009, 457, 679.  doi: 10.1038/nature07727

    64. [64]

      Mercier, L. G.; Leclerc. M. Acc. Chem. Res. 2013, 46, 1597.  doi: 10.1021/ar3003305

    65. [65]

      Matsidik, R.; Komber, H.; Luzio, A.; Caironi, M.; Sommer, M. J. Am. Chem. Soc. 2015, 137, 6705.  doi: 10.1021/jacs.5b03355

    66. [66]

      Chen, H.; Guo, Y.; Mao, Z.; Yu, G.; Huang, J.; Zhao, Y.; Liu, Y. Chem. Mater. 2013, 25, 3589.  doi: 10.1021/cm401130n

    67. [67]

      Kim, R.; Amegadze, P.; Kang, I.; Yun, H.; Noh, Y.; Kwon, S.; Kim, Y. Adv. Funct. Mater. 2013, 23, 5719.  doi: 10.1002/adfm.v23.46

    68. [68]

      Kim, R.; Kang, B.; Sin, D.; Choi, H.; Kwon, S.; Kim, Y.; Cho, K. Chem. Commun. 2015, 51, 1524.  doi: 10.1039/C4CC08381D

    69. [69]

      Kim, Y.; Long, D.; Lee, J.; Kim, G.; Shin, T.; Nam, K.; Noh, Y.; Yang, C. Macromolecules 2015, 48, 5179.  doi: 10.1021/acs.macromol.5b01012

    70. [70]

      Letizia, J. A.; Salata, M. R.; Tribout, C. M.; Facchetti, A.; Ratner, M. A.; Marks, T. J. J. Am. Chem. Soc. 2008, 130, 9679.  doi: 10.1021/ja710815a

    71. [71]

      Guo, X.; Ortiz, R. P.; Zheng, Y.; Hu, Y.; Noh, Y. Y.; Baeg, K. J.; Facchetti, A.; Marks, T. J. J. Am. Chem. Soc. 2011, 133, 1405.  doi: 10.1021/ja107678m

    72. [72]

      Kanimozhi, C.; Yaacobi-Gross, N.; Chou, K.; Amassian, A.; Anthopoulos, T. D.; Pathil, S. J. Am. Chem. Soc. 2012, 134, 16532.  doi: 10.1021/ja308211n

    73. [73]

      Park, J. H.; Jung, E. H.; Jung, W. J.; Jo, W. H. Adv. Mater. 2013, 25, 2583.  doi: 10.1002/adma.201205320

    74. [74]

      Blom, P. W. M.; Jong, M. J. M.; Munster, M. G. Phys. Rev. B 1997, 55, 655.

    75. [75]

      Meijer, E. J.; De, L. D. M.; Setayesh, S.; Veenendaal, E. V.; Huisman, B. H.; Blom, P. W. M.; Hummelen, J. C.; Scherf, U.; Klapwijk, T. M. Nat. Mater. 2003, 2, 678.  doi: 10.1038/nmat978

    76. [76]

      Chua, L.-L.; Zaumseil, J.; Chang, J.-F.; Ou, E. C. W.; Ho, P. K. H.; Sirringhaus, H.; Friend, R. H. Nature 2005, 434, 194.  doi: 10.1038/nature03376

    77. [77]

      Lei, T.; Dou, J.; Cao, X.; Wang, J.; Pei, J. J. Am. Chem. Soc. 2013, 135, 12168.  doi: 10.1021/ja403624a

    78. [78]

      Lei, T.; Xia, X.; Wang, J.; Liu, C.; Pei, J. J. Am. Chem. Soc. 2014, 136, 2135.  doi: 10.1021/ja412533d

    79. [79]

      Kim, F. S.; Guo, X.; Watson, M. D.; Jenekhe, S. A. Adv. Mater. 2010, 22, 478.  doi: 10.1002/adma.v22:4

    80. [80]

      Bijleveld, J. C.; Zoombelt, A. P.; Mathijssen, S. G. J.; Wienk, M. M.; Turbiez, M.; de Leeuw, D. M.; Janssen, R. A. J. J. Am. Chem. Soc. 2009, 131, 16616.  doi: 10.1021/ja907506r

    81. [81]

      Lin, H. W.; Lee, W. Y.; Chen, W. J. Mater. Chem. 2012, 22, 2120.  doi: 10.1039/C1JM14640H

    82. [82]

      Chen, Z.; Lee, M. J.; Ashraf, R. S.; Gu, Y.; Albert-Seifried, S.; Nielsen, M. M.; Schroeder, B.; Anthopoulos, T. D.; Heeney, M.; McCulloch, I.; Sirringhaus, H. Adv. Mater. 2012, 24, 647.  doi: 10.1002/adma.201102786

    83. [83]

      Lee, J.; Han, A. R.; Kim, J.; Kim, Y.; Oh, J. H.; Yang, C. J. Am. Chem. Soc. 2012, 134, 20713.  doi: 10.1021/ja308927g

    84. [84]

      Lee, J.; Han, A.; Yu, H.; Shin, T.; Yang, C.; Oh, J. J. Am. Chem. Soc. 2013, 135, 9540.  doi: 10.1021/ja403949g

    85. [85]

      Sonar, P.; Singh, S. P.; Li, Y. N.; Soh, M. S.; Dodabalapur, A. Adv. Mater. 2010, 22, 5409.  doi: 10.1002/adma.201002973

    86. [86]

      Kronemeijer, A. J.; Gili, E.; Shahid, M.; Rivnay, J.; Salleo, A.; Heeney, M.; Sirringhaus, H. Adv. Mater. 2012, 24, 1558.  doi: 10.1002/adma.201104522

    87. [87]

      Yun, H.; Kang, S.; Xu, Y.; Kim, S.; Kim, Y.; Noh, Y.; Kwon, S. Adv. Mater. 2014, 26, 7300.  doi: 10.1002/adma.v26.43

    88. [88]

      Gao, Y.; Zhang, X.; Tian H.; Zhang, J.; Yan, D.; Geng, Y.; Wang, F. Adv. Mater. 2015, 27, 6753.  doi: 10.1002/adma.201502896

    89. [89]

      Sun, B.; Hong, W.; Yan, Z.; Aziz, H.; Li, Y. Adv. Mater. 2014, 26, 2636.  doi: 10.1002/adma.v26.17

    90. [90]

      Xiao, C.; Zhao, C.; Zhang, A.; Jiang, W.; Janssen, R.; Li, W.; Hu, W.; Wang, Z. Adv. Mater. 2015, 27, 4963.  doi: 10.1002/adma.201502617

    91. [91]

      Li, C.; Mao, Z.; Chen, H.; Zheng, L.; Huang, J.; Zhao, B.; Tan, S.; Yu, G. Macromolecules 2015, 48, 2444.  doi: 10.1021/acs.macromol.5b00067

    92. [92]

      Yuen, J. D.; Fan, J.; Seifter, J.; Lim, B.; Hufschmid, R.; Heeger, A. J.; Wudl, F. J. Am. Chem. Soc. 2011, 133, 20799.  doi: 10.1021/ja205566w

    93. [93]

      Fan, J.; Yuen, J. D.; Wang, M. F.; Seifter, J.; Seo, J. H.; Mohebbi, A. R.; Zakhidov, D.; Heeger, A. J.; Wudl, F. Adv. Mater. 2012, 24, 2186.  doi: 10.1002/adma.201103836

    94. [94]

      Lei, T.; Dou, J.; Ma, Z.; Yao, C.; Liu, C.; Wang, J.; Pei, J. J. Am. Chem. Soc. 2012, 134, 20025.  doi: 10.1021/ja310283f

    95. [95]

      Lei, T.; Dou, J.; Ma, Z.; Liu, C.; Wang, J.; Pei, J. Chem. Sci. 2013, 4, 2447.  doi: 10.1039/c3sc50245g

    96. [96]

      Cai, Z.; Luo, H.; Qi, P.; Wang, J.; Zhang, G.; Liu, Z.; Zhang, D. Macromolecules 2014, 47, 2899.  doi: 10.1021/ma5003694

    97. [97]

      He, B.; Pun, A.; Zherebetskyy, D.; Liu, Y.; Liu, F.; Klivansky, L.; McGough, A.; Zhang, B.; Lo, K.; Russell, T.; Wang, L.; Liu, Y. J. Am. Chem. Soc. 2014, 136, 15093.  doi: 10.1021/ja508807m

    98. [98]

      Zhou, X.; Ai, N.; Guo, Z.; Zhuang, F.; Jiang, Y.; Wang, J.; Pei, J. Chem. Mater. 2015, 27, 1815.  doi: 10.1021/acs.chemmater.5b00018

    99. [99]

      Deng, Y.; Sun, B.; He, Z.; Quinn, J.; Guo, C.; Li, Y. Chem. Commun. 2015, 51, 13515.  doi: 10.1039/C5CC03917G

  • 加载中
    1. [1]

      Mengfei HeChao ChenYue TangSi MengZunfa WangLiyu WangJiabao XingXinyu ZhangJiahui HuangJiangbo LuHongmei JingXiangyu LiuHua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 2310029-0. doi: 10.3866/PKU.WHXB202310029

    2. [2]

      Chen PuDaijie DengHenan LiLi Xu . Fe0.64Ni0.36@Fe3NiN Core-Shell Nanostructure Encapsulated in N-Doped Carbon Nanotubes for Rechargeable Zinc-Air Batteries with Ultralong Cycle Stability. Acta Physico-Chimica Sinica, 2024, 40(2): 2304021-0. doi: 10.3866/PKU.WHXB202304021

    3. [3]

      Ke QiuFengmei WangMochou LiaoKerun ZhuJiawei ChenWei ZhangYongyao XiaXiaoli DongFei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036

    4. [4]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    5. [5]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    6. [6]

      Yuxia Luo Xiaoyu Xie Fangfang Chen . 药物递送魔法师——分子印迹聚合物. University Chemistry, 2025, 40(8): 202-210. doi: 10.12461/PKU.DXHX202409129

    7. [7]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    8. [8]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    9. [9]

      Jianjun Liu Xue Yang Chi Zhang Xueyu Zhao Zhiwei Zhang Yongmei Chen Qinghong Xu Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031

    10. [10]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    11. [11]

      Xuefei Leng Yanshai Wang Hai Wang Shengyang Tao . The In-Depth integration of “Industry-University-Research” in the Exploration and Practice of “Comprehensive Training in Polymer Engineering”. University Chemistry, 2025, 40(4): 66-71. doi: 10.12461/PKU.DXHX202405105

    12. [12]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    13. [13]

      Minghui WuMarkus MühlinghausXuechao LiChaojie XuQiang ChenHaiming ZhangKlaus MüllenLifeng Chi . On-Surface Synthesis of Chevron-Shaped Conjugated Ladder Polymers Consisting of Benzo[a]azulene Units. Acta Physico-Chimica Sinica, 2024, 40(8): 2307024-0. doi: 10.3866/PKU.WHXB202307024

    14. [14]

      Shanghua LiMalin LiXiwen ChiXin YinZhaodi LuoJihong Yu . High-Stable Aqueous Zinc Metal Anodes Enabled by an Oriented ZnQ Zeolite Protective Layer with Facile Ion Migration Kinetics. Acta Physico-Chimica Sinica, 2025, 41(1): 100003-0. doi: 10.3866/PKU.WHXB202309003

    15. [15]

      Hong Wu Yuxi Wang Hongyan Feng Xiaokui Wang Bangkun Jin Xuan Lei Qianghua Wu Hongchun Li . Application of Computational Chemistry in the Determination of Magnetic Susceptibility of Metal Complexes. University Chemistry, 2025, 40(3): 116-123. doi: 10.12461/PKU.DXHX202405141

    16. [16]

      Yawen GuoDawei LiYang GaoCuihong Li . Recent Progress on Stability of Organic Solar Cells Based on Non-Fullerene Acceptors. Acta Physico-Chimica Sinica, 2024, 40(6): 2306050-0. doi: 10.3866/PKU.WHXB202306050

    17. [17]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    18. [18]

      Fanpeng MengFei ZhaoJingkai LinJinsheng ZhaoHuayang ZhangShaobin Wang . Optimizing interfacial electric fields in carbon nitride nanosheet/spherical conjugated polymer S-scheme heterojunction for hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-0. doi: 10.1016/j.actphy.2025.100095

    19. [19]

      Xingchao ZhaoXiaoming LiMing LiuZijin ZhaoKaixuan YangPengtian LiuHaolan ZhangJintai LiXiaoling MaQi YaoYanming SunFujun Zhang . Photomultiplication-Type All-Polymer Photodetectors and Their Applications in Photoplethysmography Sensor. Acta Physico-Chimica Sinica, 2025, 41(1): 100007-0. doi: 10.3866/PKU.WHXB202311021

    20. [20]

      Hanmei LüXin ChenQifu SunNing ZhaoXiangxin Guo . Uniform Garnet Nanoparticle Dispersion in Composite Polymer Electrolytes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305016-0. doi: 10.3866/PKU.WHXB202305016

Metrics
  • PDF Downloads(0)
  • Abstract views(6062)
  • HTML views(1760)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return