Citation: Miao Zhiwei, Cai Yan, Ge Haihong, Fu Jiaxin, Abudukeremu Munira. Research Progress of α-Diazophosphonates[J]. Chinese Journal of Organic Chemistry, ;2016, 36(5): 976-986. doi: 10.6023/cjoc201511021 shu

Research Progress of α-Diazophosphonates

  • Corresponding author: Miao Zhiwei, miaozhiwei@nankai.edu.cn Abudukeremu Munira, 
  • Received Date: 12 November 2015
    Revised Date: 16 December 2015

    Fund Project: Project supported by the Committee of Science and Technology of Tianjin City No. 15JCYBJC20700and the Xinjiang Laboratory of Native Medicinal and Edible Plant Resources Chemistry Open Subject No. 2015KL030

Figures(15)

  • Diazo compounds are the most commonly used carbene precursors. They can be dediazonized to obtain highly reactive free carbene intermediates or metal cabenoid under transition metal catalysts. Then varieties of chemical transformations can be proceeded, such as X—H (X=C, N, O, S, Si, etc.) insertions, 1,2-hydrogen migration reactions and cyclopropanations. Varieties of pharmaceuticals, natural products and other bioactive moleculars could be synthesized through these methods. As one of the most important diazo compounds α-diazophosphonates could also proceed various chemical transformations and be used to synthesize varieties of organic functional phosphorous compounds. Because organic phosphorous compounds exhibit extensive bioactivities and pharmaceutic activities, the research of α-diazophosphonates has attracted lots of attentions of scientists. The recent development of the reactions of α-diazophosphonates catalyzed by various kinds of catalysts is summarized.
  • 加载中
    1. [1]

       

    2. [2]

      Zollinger, H. Diazo Chemistry I and II, VCH, Weinheim, 1994. (b) Kurti, L.; Czako, B. Strategic Applications of Named Reactions in Organic Synthesis, Elsevier, Amsterdam, 2005, pp. 376~377. (c) Regitz, M.; Maas, G. Diazo Compounds-Properties and Synthesis, Academic Press, Orlando, 1986.

    3. [3]

      Wang, J.; Boyarskikh, V.; Rainier, J. D. Org. Lett. 2011, 13, 700. (b) Doyle, M. P.; Yan, M.; Hu, W.; Gronenberg, L. S. J. Am. Chem. Soc. 2003, 125, 4692. (c) Lian, Y. J.; Davies, H. M. L. J. Am. Chem. Soc. 2011, 133, 11940. (d) Wang, X. C.; Xu, X. F.; Zavalij, P. Y.; Doyle, M. P. J. Am. Chem. Soc. 2011, 133, 16402. (e) Briones, J. F.; Davies, H. M. L. J. Am. Chem. Soc. 2013, 133, 13314. (f) Smith, A. G.; Davies, H. M. L. J. Am. Chem. Soc. 2012, 134, 18241. 

    4. [4]

      Cox, G. G.; Miller, D. J.; Moody, C. J.; Robert, E.; Sie, H. B. Tetrahedron 1994, 50, 3195. 

    5. [5]

      Gois, P. M. P.; Afonso, C. A. M. Eur. J. Org. Chem. 2003, 3798.

    6. [6]

      Candeias, N. R.; Gois, P. M. P.; Afonso, C. A. M. J. Org. Chem. 2006, 71, 5489. 

    7. [7]

      Candeias, N. R.; Gois, P. M. P.; Veiros, L. F.; Afonso, C. A. M. J. Org. Chem. 2008, 73, 5926. 

    8. [8]

      Zhu, S. F.; Chen, W. Q.; Zhang, Q. Q.; Mao, H. X.; Zhou, Q. L. Synlett2011, 919.

    9. [9]

      Hladeuk, I.; Chastagner, V.; Collins, S. G.; Plunkett, S. J.; Ford, A.; Debarge, S.; Maguire, A. R. Tetrahedron 2012, 68, 1894. 

    10. [10]

      Davis, F. A.; Wu, Y. Z.; Xu, H.; Zhang, J. Y. Org. Lett. 2004, 6, 4523. (b) Titanyuk, I. D.; Vorob'eva, D. V.; Osipov, S. N.; Beletskaya, I. P. Synlett2006, 1355. 

    11. [11]

      Ukita, T.; Nakamura, Y. Org. Lett. 2002, 4, 2317. (b) Haigh, D. Tetrahedron 1994, 50, 3177.

    12. [12]

      Xue, J. D.; Luk, H. L.; Platz, M. S. J. Am. Chem. Soc. 2011, 133, 1763. (b) Zhu, S. F.; Xu, B.; Wang, G. P.; Zhou, Q. L. J. Am. Chem. Soc. 2012, 134, 436. 

    13. [13]

      Nakamura, E.; Yoshikai, N.; Yamanaka, M. J. Am. Chem. Soc. 2002, 124, 7181. 

    14. [14]

      Salaun, J. Chem. Rev. 1989, 89, 1247. (b) Donaldson, W. A. Tetrahedron 2001, 57, 8589. (c) Faust, R. Angew. Chem., Int. Ed. 2001, 40, 2251. (d) Pietruszka, J. Chem. Rev. 2003, 103, 1051. (e) Wessjohann, L. A.; Brandt, W.; Thiemann, T. Chem. Rev. 2003, 103, 1625. (f) Brackmann, F.; de Meijere, A. Chem. Rev. 2007, 107, 4493. (g) Marek, I.; Simaan, S.; Masarwa, A. Angew. Chem., Int. Ed. 2007, 46, 7364. (h) Rubin, M.; Rubina, M.; Gevorgyan, V. Chem. Rev. 2007, 107, 3117.

    15. [15]

      Schnaars, C.; Hansen, T. Org. Lett. 2012, 14, 2794. (b) Schnaars, C.; Hennum, M.; Hansen, T. J. Org. Chem. 2013, 78, 7488.

    16. [16]

      Lindsay, V. N. G.; Fiset, D.; Gritsch, P. J.; Azzi, S.; Charette, A. B. J. Am. Chem. Soc. 2013, 135, 1463. (b) Marcoux, D.; Goudreau, S. R.; Charette, A. B. J. Org. Chem. 2009, 74, 8939. (c) Lifchits, O.; Charette, A. B. Org. Lett. 2008, 10, 2809. (d) Pohlhaus, P. D.; Johnson, J. S. J. Am. Chem. Soc. 2005, 127, 16014. (e) Campbell, M. J.; Johnson, J. S. J. Am. Chem. Soc. 2008, 131, 10370. (f) Young, I. S.; Kerr, M. A. J. Am. Chem. Soc. 2007, 129, 1465. 

    17. [17]

      Briones, J. F.; Davies, H. M. L. Org. Lett. 2011, 13, 3984. 

    18. [18]

      Jiang, J.; Xu, H. D.; Xi, J. B.; Ren, B. Y.; Lv, F. P.; Guo, X.; Jiang, L. Q.; Zhang, Z. Y.; Hu, W. H. J. Am. Chem. Soc. 2011, 133, 10370. (b) Xing, D.; Hu, W. H. Tetrahedron 2014, 55, 777. (c) Zhu, Y. G.; Zhai C. W.; Yang, L. P.; Hu, W. H. Eur. J. Org. Chem. 2011, 1113. (d) Huang, H. X.; Guo, X.; Hu, W. H. Angew. Chem., Int. Ed. 2007, 46, 1337. (e) Jing, C. C.; Xing, D.; Qian, Y.; Shi, T. D.; Zhao, Y.; Hu, W. H. Angew. Chem., Int. Ed. 2013, 52, 9289. (f) Zhang, D.; Qiu, H.; Jiang, L. Q.; Lv, F. P.; Ma, C. Q.; Hu, W. H. Angew. Chem., Int. Ed. 2013, 52, 13356. (g) Zhou, C. Y.; Wang, J. C.; Wei, J. H.; Xu, Z. J.; Guo, Z.; Low, K. H.; Che, C. M. Angew. Chem., Int. Ed. 2012, 51, 11376.

    19. [19]

      Zhou, Y. J.; Ye, F.; Wang, X.; Xu, S.; Zhang, Y.; Wang, J. B. J. Org. Chem. 2015, 80, 6109. 

    20. [20]

      Taber, D. F.; Herr, R. J.; Pack, S. K. J. Org. Chem. 1996, 61, 2908. (b) Zhang, Z. H.; Wang, J. B. Tetrahedron 2008, 64, 6577. (c) Jiang, N.; Ma, Z. H.; Qu, Z. H.; Xing, X. Y.; Xie, L. F.; Wang. J. B. J. Org. Chem. 2003, 68, 893. (d) Zhou, L.; Liu, Y. Z.; Zhang, Y.; Wang, J. B. Chem. Commun. 2011, 47, 3622. (e) Xu, F.; Zhang, S. W.; Wu, X. N.; Liu, Y.; Shi, W. F.; Wang, J. B. Org. Lett. 2006, 8, 3207. (f) Xiao, F. P.; Wang, J. B. J. Org. Chem. 2006, 71, 5789. (g) Xu, F.; Shi, W. F.; Wang, J. B. J. Org. Chem. 2005, 70, 4191. (h) Jiang, N; Qu, Z. H.; Wang, J. B. Org. Lett. 2001, 3, 2989. 

    21. [21]

      Cai, Y.; Ge, H. H.; Yu, C. B.; Sun, W. Z.; Zhan, J. C.; Miao, Z. W. RSC Adv. 2014, 4, 1492.

    22. [22]

      Ge, H. H.; Liu, S.; Cai, Y.; Sun, Y. C.; Miao, Z. W. Synthesis 2016, 48, 448.

    23. [23]

      Cai, Y.; Lyu, H. R.; Yu, C. B.; Miao, Z. W. Adv. Synth. Catal. 2014, 356, 596. 

    24. [24]

      Patil, U. D. Synlett 2009, 17, 2880. (b) Gong, D. H.; Zhang, L.; Yuan, C. Y. Synth. Commun. 2004, 34, 3259. (c) Bartnik, R.; Lesniak, S.; Wasiak, P. Tetrahedron Lett. 2004, 45, 7301. (d) Mukund, M. D.; Pramanik, A.; Chaturvediab, K.; Rastogi, N. Chem. Commun. 2014, 50, 12896. (e) Muruganantham, R.; Namboothiri, I. J. Org. Chem. 2010, 75, 2197. (f) Muruganantham, R.; Mobin, S. M.; Namboothiri, I. N. N. Org. Lett. 2007, 9, 1125.

    25. [25]

      Verma, D.; Mobin, S.; Namboothiri, I. N. N. J. Org. Chem. 2011, 76, 4764. 

    26. [26]

      Mohanan, K.; Martin, A. R.; Toupet, L.; Smietana, M.; Vasseur, J. J. Angew. Chem., Int. Ed. 2010, 49, 3196. 

    27. [27]

      Cai, Y.; Lu, Y. C.; Yu, C. B.; Lyu H. R., Miao, Z. W. Org. Biomol. Chem. 2013, 11, 5491. 

    28. [28]

      Cai, Y.; Ge, H. H.; Sun, W. Z.; Miao, Z. W. Synthesis2015, 47, 1669.

    29. [29]

       

  • 加载中
    1. [1]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    2. [2]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    3. [3]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    4. [4]

      Lili Jiang Shaoyu Zheng Xuejiao Liu Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004

    5. [5]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    6. [6]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    7. [7]

      Qianlang Wang Jijun Sun Qian Chen Quanqin Zhao Baojuan Xi . The Appeal of Organophosphorus Compounds: Clearing Their Name. University Chemistry, 2025, 40(4): 299-306. doi: 10.12461/PKU.DXHX202405205

    8. [8]

      Yang ZHOULili YANWenjuan ZHANGPinhua RAO . Thermal regeneration of biogas residue biochar and the ammonia nitrogen adsorption properties. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1574-1588. doi: 10.11862/CJIC.20250032

    9. [9]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    10. [10]

      Fanpeng MengFei ZhaoJingkai LinJinsheng ZhaoHuayang ZhangShaobin Wang . Optimizing interfacial electric fields in carbon nitride nanosheet/spherical conjugated polymer S-scheme heterojunction for hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-0. doi: 10.1016/j.actphy.2025.100095

    11. [11]

      Ying Xiong Guangao Yu Lin Wu Qingwen Liu Houjin Li Shuanglian Cai Zhanxiang Liu Xingwen Sun Yuan Zheng Jie Han Xin Du Chengshan Yuan Qihan Zhang Jianrong Zhang Shuyong Zhang . Basic Operations and Specification Suggestions for Determination of Physical Constants of Organic Compounds. University Chemistry, 2025, 40(5): 106-121. doi: 10.12461/PKU.DXHX202503079

    12. [12]

      Yongjian Zhang Fangling Gao Hong Yan Keyin Ye . Electrochemical Transformation of Organosulfur Compounds. University Chemistry, 2025, 40(5): 311-317. doi: 10.12461/PKU.DXHX202407035

    13. [13]

      Nan Xiao Fang Sun . 二芳基硫醚化合物的构建及应用. University Chemistry, 2025, 40(6): 360-363. doi: 10.12461/PKU.DXHX202407099

    14. [14]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    15. [15]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    16. [16]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    17. [17]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    18. [18]

      Hanxue LIUShijie LIMeng RENXuling XUEHongke LIU . Design and antitumor properties of dehydroabietic acid functionalized cyclometalated iridium(Ⅲ) complex. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1483-1494. doi: 10.11862/CJIC.20250031

    19. [19]

      Xiaofeng ZhuBingbing XiaoJiaxin SuShuai WangQingran ZhangJun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-0. doi: 10.3866/PKU.WHXB202407005

    20. [20]

      Wei Li Ze Chang Meihui Yu Ying Zhang . Curriculum Ideological and Political Design of Piezoelectricity Measurement Experiments of Coordination Compounds. University Chemistry, 2024, 39(2): 77-82. doi: 10.3866/PKU.DXHX202308004

Metrics
  • PDF Downloads(0)
  • Abstract views(1708)
  • HTML views(307)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return