Citation: Han Yeqiang, Zhou Wenjie, Shen Haimin, Liu Qiuping, Yu Wenyan, Ji Hongbing, She Yuanbin. Progress in the Immobilization of β-Cyclodextrin and Their Application in Adsorption of Environmental Pollutants[J]. Chinese Journal of Organic Chemistry, ;2016, 36(2): 248-257. doi: 10.6023/cjoc201508002 shu

Progress in the Immobilization of β-Cyclodextrin and Their Application in Adsorption of Environmental Pollutants

  • Corresponding author: Shen Haimin, 
  • Received Date: 5 August 2015
    Available Online: 22 October 2015

    Fund Project: 国家自然科学基金(Nos. 21306176, 21276006, 21476270) (Nos. 21306176, 21276006, 21476270)浙江工业大学科研启动基金(No. G2817101103) (No. G2817101103)浙江省自然科学基金(No. LQ14B020002) (No. LQ14B020002)浙江省教育厅科研(No. Y201328036) (No. Y201328036)浙江工业大学校自然科学基金(No. 2014XY003)资助项目. (No. 2014XY003)

  • β-Cyclodextrin has been widely applied in the adsorption of environmental pollutants due to its unique characteristics in structure, and its physical and chemical properties. This review describes some new methods and strategies in the immobilization of β-cyclodextrin to construct adsorbents and their application in the adsorption of environmental pollutants, and some absorbent mechanisms are also discussed. The supporters involved mainly include the inorganic materials, organic polymers, and natural polymers. The immobilization of β-cyclodextrin to construct adsorbents can not only make full use of the inherent advantage in the structure of β-cyclodextrin, but also poss the advantage of immobilization, which can enhance the adsorption performance of adsorbents and their retrievabilities, and meanwhile no additional pollution happens during their application. It is very important in the greenization of adsorbent.
  • 加载中
    1. [1]

      [1] Villiers, A. Compt. Rend. 1891, 112, 536.

    2. [2]

      [2] Astray, G.; Gonzalez-Barreiro, C.; Mejuto, J. C.; Rial-Otero, R.; Simal-Gandara, J. Food Hydrocolloids 2009, 23, 1631.

    3. [3]

      [3] Szejtli, J.; Szente, L. Eur. J. Pharm. Biopharm. 2005, 61, 115.

    4. [4]

      [4] Del Valle, E. M. M. Process Biochem. 2004, 39, 1033.

    5. [5]

      [5] Arima, H.; Kondo, T.; Irie, T.; Uekama, K. J. Pharm. Sci. 1992, 81, 1119.

    6. [6]

      [6] Kristmundsdóttir, T.; Loftsson, T.; Holbrook, W. P. Int. J. Pharm. 1996, 139, 63

    7. [7]

      [7] Pitha, J.; Harman, S. M.; Michel, M. E. J. Pharm. Sci. 1986, 75, 165.

    8. [8]

      [8] Cathum, S. J.; Dumouchel, A.; Punt, M.; Brown, C. E. Soil Sediment Contam. 2007, 16, 15.

    9. [9]

      [9] Yamasaki, H.; Makihata, Y.; Fukunaga, K. J. Chem. Technol. Biotechnol. 2008, 83, 991.

    10. [10]

      [10] Song, C.; Ding, L.; Yao, F.; Deng, J.; Yang, W. Carbohydr. Polym. 2013, 91, 217.

    11. [11]

      [11] Zhou, D. X.; Sun, T.; Deng, W. Chin. J. Org. Chem. 2012, 32, 239 (in Chinese). (周冬香, 孙 涛, 邓维, 有机化学, 2012, 32, 239.)

    12. [12]

      [12] Sun, T.; Li, J. Y.; Hao, A. Y. Chin. J. Org. Chem. 2012, 32, 2054 (in Chinese). (孙涛, 李建业, 郝爱友, 有机化学, 2012, 32, 2054.)

    13. [13]

      [13] Harada, A.; Takashima, Y.; Yamaguchi, H. Chem. Soc. Rev. 2009, 38, 875.

    14. [14]

      [14] Ramamurthy, V.; Eaton, D. F. Acc. Chem. Res. 1988, 21, 300.

    15. [15]

      [15] Maher, Fathalla.; Amelia, N.; Li, S. C.; Russell, S.; Ulrike, D.; Janarthanan, J. J. Am. Chem. Soc. 2010, 132, 9966

    16. [16]

      [16] Camacho, C.; Matias, J.; Cao, R.; Matos, M.; Chico, B.; Hernandez, J.; Longo, M.; Sanroman, M.; Villalonga, R. Langmuir 2008, 24, 7654.

    17. [17]

      [17] Kaneto, U.; Fumitoshi, H.; Tetsumi, I. Chem. Rev. 1998, 98, 2045.

    18. [18]

      [18] Shen, H. M.; Ji, H. B. Chin. J. Org. Chem. 2011, 31, 791 (in Chinese). (沈海民, 纪红兵, 有机化学, 2011, 31, 791.)

    19. [19]

      [19] Shen, H. M.; Ji, H. B. Chin. J. Org. Chem. 2012, 32, 975 (in Chinese). (沈海民, 纪红兵, 有机化学, 2012, 32, 975.)

    20. [20]

      [20] Shen, H. M.; Ji, H. B. Chin. J. Org. Chem. 2012, 32, 1684 (in Chinese). (沈海民, 纪红兵, 有机化学, 2012, 32, 1684.)

    21. [21]

      [21] Shen, H. M.; Ji, H. B. Tetrahedron 2013, 69, 8360.

    22. [22]

      [22] Shen, H.-M.; Zhu, G.-Y.; Yu, W.-B.; Wu, H.-K.; Ji, H.-B.; Shi, H.-X.; Zheng, Y.-F.; She, Y.-B. RSC Adv. 2015, 5, 84410.

    23. [23]

      [23] Ai, F.; Wang, Y.; Chen, H.; Yang, Y. H.; Tan, T. T. Y.; Ng, S. C. Analyst 2013, 138, 2289.

    24. [24]

      [24] Lukhele, L. P.; Krause, R. W. M.; Mamba, B. B.; Momba, M. N. B. Water SA 2010, 36, 433

    25. [25]

      [25] Keletso, M.; Maurice S, O.; Sabelo D, M. J. Environ. Chem. Eng. 2015, 2, 18.

    26. [26]

      [26] Mamba, G.; Mbianda, X. Y.; Govender, P. P. Carbohydr. Polym. 2013, 98, 470.

    27. [27]

      [27] Sinha, A.; Basiruddin, S.; Chakraborty, A.; Jana, N. R. ACS Appl. Mater Interfaces 2015, 7, 1340.

    28. [28]

      [28] Shen, H.-M.; Zhu, G.-Y.; Yu, W.-B.; Wu, H.-K.; Ji, H.-B.; Shi, H.-X.; She, Y.-B.; Zheng, Y.-F. Appl. Surf. Sci. 2015, 356, 1155.

    29. [29]

      [29] Wang, D.; Liu, L.; Jiang, X.; Yu, J.; Chen, X.; Chen, X. Appl. Surf. Sci. 2015, 329, 197.

    30. [30]

      [30] Wang, D.; Liu, L.; Jiang, X.; Yu, J.; Chen, X. Colloids Surf. A 2015, 466, 166.

    31. [31]

      [31] Wang, H.; Liu, Y. G.; Zeng, G. M.; Hu, X. J.; Hu, X.; Li, T. T.; Li, H. Y.; Wang, Y. Q.; Jiang, L. H. Carbohydr. Polym. 2014, 113, 166

    32. [32]

      [32] Liu, X.; Yan, L.; Yin, W.; Zhou, L.; Tian, G.; Shi, J.; Yang, Z.; Xiao, D.; Gu, Z.; Zhao, Y. J. Mater. Chem. A 2014, 2, 12296.

    33. [33]

      [33] Badruddoza, A. Z.; Shawon, Z. B.; Tay, W. J.; Hidajat, K.; Uddin, M. S. Carbohydr. Polym. 2013, 91, 322

    34. [34]

      [34] Li, H.; El-Dakdouki, M. H.; Zhu, D. C.; Abela, G. S.; Huang, X. Chem. Commun. (Camb) 2012, 48, 3385

    35. [35]

      [35] Riss, J.; Cloyd, J.; Gates, J.; Collins, S. Acta Neurol. Scand 2008, 118, 69.

    36. [36]

      [36] Cai, K.; Li, J.; Luo, Z.; Hu, Y.; Hou, Y.; Ding, X. Chem. Commun. (Camb) 2011, 47, 7719.

    37. [37]

      [37] Yu, L.; Xue, W.; Cui, L.; Xing, W.; Cao, X.; Li, H. Int. J. Biol. Macromol. 2014, 64, 233.

    38. [38]

      [38] Song, X. L.; Sun, L. B.; He, G. S.; Liu, X. Q. Chem. Commun. (Camb) 2011, 47, 650.

    39. [39]

      [39] Zhang, X.; Yang, Z.; Li, X.; Deng, N.; Qian, S. Chem. Commun. 2013, 49, 825.

    40. [40]

      [40] Anandan, S.; Yoon, M. Catal. Commun. 2004, 5, 271.

    41. [41]

      [41] Tachikawa, T.; Tojo, S.; Fujitsuka, M.; Majima, T. Chem.-Eur. J. 2006, 12, 7585.

    42. [42]

      [42] Wu, H.; Kong, J.; Yao, X.; Zhao, C.; Dong, Y.; Lu, X. Chem. Eng. J. 2015, 270, 101.

    43. [43]

      [43] Poon, L.; Wilson, L. D.; Headley, J. V. J. Appl. Polym. Sci. 2013, 127, 4889.

    44. [44]

      [44] Han, J.; Xie, K.; Du, Z.; Zou, W.; Zhang, C. Carbohydr. Polym. 2015, 120, 85.

    45. [45]

      [45] Kono, H.; Nakamura, T. React. Funct. Polym. 2013, 73, 1096.

    46. [46]

      [46] Li, N.; Wei, X.; Mei, Z.; Xiong, X.; Chen, S.; Ye, M.; Ding, S. Carbohydr. Res. 2011, 346, 1721.

    47. [47]

      [47] Kayaci, F.; Aytac, Z.; Uyar, T. J. Hazard Mater. 2013, 261, 286.

    48. [48]

      [48] Huang, Z.; Wu, Q.; Liu, S.; Liu, T.; Zhang, B. Carbohydr. Polym. 2013, 97, 496.

    49. [49]

      [49] Kono, H.; Onishi, K.; Nakamura, T. Carbohydr. Polym. 2013, 98, 784.

    50. [50]

      [50] Celebioglu, A.; Demirci, S.; Uyar, T. Appl. Surf. Science 2014, 305, 581.

    51. [51]

      [51] Lü, H.; An, H.; Wang, X.; Xie, Z. Int. J. Biol. Macromol. 2013, 61, 359.

    52. [52]

      [52] Yang, J.-S.; Han, S.-y.; Yang, L.; Zheng, H.-C. J. Chem. Technol. Biotechnol. 2014, n/a

    53. [53]

      [53] Liu, C.; Zhang, Z.; Liu, X.; Ni, X.; Li, J. RSC Adv. 2013, 3, 25041.

    54. [54]

      [54] Hu, Q.; Gao, D.-W.; Pan, H.; Hao, L.; Wang, P. RSC Adv. 2014, 4, 40071.

    55. [55]

      [55] Morin-Crini, N.; Crini, G. Prog. Polym. Sci. 2012, 38, 344.

    56. [56]

      [56] Sun, Z. Y.; Shen, M. X.; Yang, A. W.; Liang, C. Q.; Wang, N.; Cao, G. P. Chem. Commun. (Camb) 2011, 47, 1072.

  • 加载中
    1. [1]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    2. [2]

      Hui WangAbdelkader LabidiMenghan RenFeroz ShaikChuanyi Wang . Recent Progress of Microstructure-Regulated g-C3N4 in Photocatalytic NO Conversion: The Pivotal Roles of Adsorption/Activation Sites. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-0. doi: 10.1016/j.actphy.2024.100039

    3. [3]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    4. [4]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    5. [5]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    6. [6]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    7. [7]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    8. [8]

      Wei Li Jinfan Xu Yongjun Zhang Ying Guan . 共价有机框架整体材料的制备及食品安全非靶向筛查应用——推荐一个仪器分析综合化学实验. University Chemistry, 2025, 40(6): 276-285. doi: 10.12461/PKU.DXHX202406013

    9. [9]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    10. [10]

      Hongbo Zhang Yihong Tang Suxia Zhang Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013

    11. [11]

      Xinxin YUYongxing LIUXiaohong YIMiao CHANGFei WANGPeng WANGChongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438

    12. [12]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    13. [13]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    14. [14]

      Yuanqing WangYusong PanHongwu ZhuYanlei XiangRong HanRun HuangChao DuChengling Pan . Enhanced Catalytic Activity of Bi2WO6 for Organic Pollutants Degradation under the Synergism between Advanced Oxidative Processes and Visible Light Irradiation. Acta Physico-Chimica Sinica, 2024, 40(4): 2304050-0. doi: 10.3866/PKU.WHXB202304050

    15. [15]

      Changjun YouChunchun WangMingjie CaiYanping LiuBaikang ZhuShijie Li . Improved Photo-Carrier Transfer by an Internal Electric Field in BiOBr/N-rich C3N5 3D/2D S-Scheme Heterojunction for Efficiently Photocatalytic Micropollutant Removal. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-0. doi: 10.3866/PKU.WHXB202407014

    16. [16]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    17. [17]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    18. [18]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    19. [19]

      Yang ZHOULili YANWenjuan ZHANGPinhua RAO . Thermal regeneration of biogas residue biochar and the ammonia nitrogen adsorption properties. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1574-1588. doi: 10.11862/CJIC.20250032

    20. [20]

      Chongjing LiuYujian XiaPengjun ZhangShiqiang WeiDengfeng CaoBeibei ShengYongheng ChuShuangming ChenLi SongXiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 2309036-0. doi: 10.3866/PKU.WHXB202309036

Metrics
  • PDF Downloads(0)
  • Abstract views(956)
  • HTML views(117)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return