Citation: Rao Honghong, Quan Zhengjun, Bai Lin, Ye Helin. Progress on the Synthesis of Enantiomerically Pure 3,4-Dihydropyrimidin-2-one Derivatives[J]. Chinese Journal of Organic Chemistry, ;2016, 36(2): 283-296. doi: 10.6023/cjoc201507001 shu

Progress on the Synthesis of Enantiomerically Pure 3,4-Dihydropyrimidin-2-one Derivatives

  • Corresponding author: Rao Honghong, 
  • Received Date: 1 July 2015
    Available Online: 14 September 2015

    Fund Project: 国家自然科学基金(Nos. 21265009, 21362032)资助项目. (Nos. 21265009, 21362032)

  • 3,4-Dihydropyrimidinethiones are chiral molecules, however, only racemic products are isolated in the most reported Biginelli reactions. It has been proved that the absolute configuration of the C(4) stereogenic center has significant influence on the biological activity. The development in the accessing of optically active 3,4-dihydropyrimidinethiones focusing on the recent advances in the asymmetric catalytic Biginelli reactions is summarized.
  • 加载中
    1. [1]

      [1] Biginelli, P. Gazz. Chim. Ital. 1893, 23, 360.

    2. [2]

      [2] Atwal, K. S.; Rovnyak, G. C.; Schwartz, J.; Moreland, S.; Hedberg, A.; Gougoutas, J. Z.; Malley, M. F.; Floyd, D. M. J. Med. Chem. 1990, 33, 1510.

    3. [3]

      [3] (a) Rovnyak, G. C.; Atwal, K. S.; Hedberg, A.; Kimball, S. D.; Moreland, S.; Gougoutas, J .Z.; O'Reilly, B. C.; Schwartz, J.; Malley, M. F. J. Med. Chem. 1992, 35, 3254. (b) Deres, K.; Schroder, C. H.; Paessens, A.; Goldmann, S.; Hacker, H. J.; Weber, O.; Kraemer, T.; Niewoehner, U.; Pleiss, U.; Stoltefuss, J.; Graef, E.; Koletzki, D.; Masantschek, R. N. A.; Reimann, A.; Jaeger, R.; Groâ, R.; Beckermann, B.; Schlemmer, K.-H.; Haebich, D.; Rubsamen-Waigmann, H. Science 2003, 299, 893. (d) Kappe, C. O. Eur. J. Med. Chem. 2000, 35, 1043. (c) Lewis, R. W.; Mabry, J.; Polisar, J. G.; Eagen, K. P.; Ganem, B.; Hess, G. P. Biochemistry 2010, 49, 4841. (d) Wan, J.-P.; Pan, Y. Mini-Rev. Med. Chem. 2012, 12, 337.

    4. [4]

      [4] Hurst, E. W.; Ann. N. Y. Ann. NY Acad. Sci. 1962, 98, 275.

    5. [5]

      [5] (a) Kappe, C. O. Tetrahedron 1993, 49, 6937. (b) Kappe, C. O. Acc. Chem. Res. 2000, 33, 879. (c) Wan, J.-P.; Liu, Y. Synthesis 2010, 2010, 3943.

    6. [6]

      [6] Atwal, K. S.; Swanson, B. N.; Unger, S. E.; Floyd, D. M.; Moreland, S.; Hedberg, A.; O'Reilly, B. C. J. Med. Chem. 1991, 34, 806.

    7. [7]

      [7] Barrow, J. C.; Nantermet, P. G.; Selnick, H. G.; Glass, K. L.; Rittle, K. E.; Gilbert, K. F.; Steele, T. G.; Homnick, C. F.; Freidinger, R. M.; Ransom, R. W.; Kling, P.; Reiss, D.; Broten, T. P.; Schorn, T. W.; Chang, R. S. L.; O′Malley, S. S.; Olah, T. V.; Ellis, J. D.; Barrish, A.; Kassahun, K.; Leppert, P.; Nagarathnam, D.; Forray, C. J. Med. Chem. 2000, 43, 2703.

    8. [8]

      [8] (a) Maliga, Z.; Kapoor, T. M.; Mitchison, T. J. Chem. Biol. 2002, 9, 989. (b) Debonis, S.; Simorre, J. P.; Crevel, I.; Lebeau, L.; Skoufias, D. A.; Blangy, A.; Ebel, C.; Gans, P.; Cross, R.; Hackney, D. D.; Wade, R. H.; Kozielski, F. Biochemistry 2003, 42, 338.

    9. [9]

      [9] (a) Du, B.-X.; Quan, Z.-J.; Da, Y.-X.; Zhang, Z.; Wang, X.-C. Adv. Synth. Catal. 2015, 357, 1270. (b) Quan, Z.-J.; Lv,Y.; Jing, F.-Q.; Jia, X.-D.; Huo, C.-D.; Wang, X.-C. Adv. Synth. Catal. 2014, 356, 325. (c) Quan, Z.-J.; Jing, F.-Q.; Zhang, Z.; Da, Y.-X.; Wang, X.-C. Eur. J. Org. Chem. 2013, 2013, 7175. (d) Quan, Z.-J.; Lv, Y.; Wang, Z.-J.; Zhang, Z.; Da, Y.-X.; Wang, X.-C. Tetrahedron Lett. 2013, 54, 1884. (e) Quan, Z.-J.; Zhang, Z.; Da, Y.-X.; Wang, X.-C. Chin. J. Org. Chem. 2009, 29, 876 (in Chinese). (权正军, 张彰, 达玉霞, 王喜存, 有机化学, 2009, 29, 876). (f) Wang, X. C.; Quan, Z. J.; Wang, F.; Wang, M. G.; Zhang, Z.; Li, Z. Synth. Commun. 2006, 36, 451.

    10. [10]

      [10] (a) Gong, L. Z.; Chen, X. H.; Xu, X.-Y. Chem. Eur. J. 2007, 13, 8920. (b) Heravi, M. M.; Asadi, S.; Lashkariani, B. M. Mol. Diversity 2013, 17, 389. (c) Wan, J.-P.; Lin, F.; Liu, Y. Curr. Org. Chem. 2014, 18, 687.

    11. [11]

      [11] Atwal, K. S.; Rovnyak, G. C.; Kimball, S. D.; Floyd, D. M.; Moreland, S.; Swanson, B. N.; Gougoutas, J. Z.; Schwartz, J.; Smillie, K. M.; Malley, M. F. J. Med. Chem. 1990, 33, 2629.

    12. [12]

      [12] Dondoni, A.; Massi, A.; Sabbatini, S. Tetrahedron Lett. 2002, 43, 5913.

    13. [13]

      [13] (a) Chartrain, C. M.; Ikemoto, N.; Taylor, C. S. WO 9907695, 1999 [Chem. Abstr. 1999, 130, 182478]. (b) Sidler, D. R.; Barta, N.; Li, W.; Hu, E.; Matty, L.; Ikemoto, N.; Campbell, J. S.; Chartrain, M.; Gbewonyo, K.; Boyd, R.; Corley, E. G.; Ball, R. G.; Larsen, R. D.; Reider, P. J. Can. J. Chem. 2002, 80, 646.

    14. [14]

      [14] Prasad, A. K.; Mukherjee, C.; Singh, S. K.; Brahma, R.; Singh, R.; Saxena, R. K.; Olsen, C. E.; Parmar, V. S. J. Mol. Catal. B: Enzyme 2006, 40, 93.

    15. [15]

      [15] Dondoni, A.; Massi, A.; Minghini, E.; Sabbatini, S.; Bertolasi, V. J. Org. Chem. 2003, 68, 6172.

    16. [16]

      [16] Dondoni, A.; Massi, A. Acc. Chem. Res. 2006, 39, 451.

    17. [17]

      [17] Kappe, C. O.; Uray, G.; Roschger, P.; Lindner, W.; Kratky, C.; Keller, W. Tetrahedron 1992, 48, 5473.

    18. [18]

      [18] Lou, S.; Taoka, B. M.; Ting, A.; Schaus, S. E. J. Am. Chem. Soc. 2005, 127, 11256.

    19. [19]

      [19] Lou, S.; Dai, P.; Schaus, S. E. J. Org. Chem. 2007, 72, 9998.

    20. [20]

      [20] Goss, J. M.; Schaus, S. E. J. Org. Chem. 2008, 73, 7651.

    21. [21]

      [21] Muñoz-Muñiz, O.; Juaristi, E. ARKIVOC 2003, xi, 16.

    22. [22]

      [22] Huang, Y.; Yang, F.; Zhu, C. J. Am. Chem. Soc. 2005, 127, 16386.

    23. [23]

      [23] Cai, Y;-F.; Yang, H.-M.; Li, L.; Jiang, K.-Z.; Lai, G.-Q.; Jiang, J.-X.; Xu, L.-W. Eur. J. Org. Chem. 2010, 2010, 4986.

    24. [24]

      [24] Karthikeyan, P.; Aswar, S. A.; Muskawar, P. N.; Bhagat, P. R.; Kumar, S. S. J. Organomet. Chem. 2013, 723, 154.

    25. [25]

      [25] (a) Stephen, J. C. Chem. Eur. J. 2006, 12, 5418. (b) Phillips A. M. F. Eur. J. Org. Chem. 2014, 2014, 7291.

    26. [26]

      [26] Chen, X.-H.; Xu, X.-Y.; Liu, H.; Cun, L.-F.; Gong, L.-Z. J. Am. Chem. Soc. 2006, 128, 14802.

    27. [27]

      [27] (a) Li, N.; Chen, X.-H.; Song, J.; Luo, S.-W.; Fan, W.; Gong, L.-Z. J. Am. Chem. Soc. 2009, 131, 15301. (b) Yu, J.; Shi, F.; Gong, L.-Z. Acc. Chem. Res. 2011, 44, 1156.

    28. [28]

      [28] Xu, F.; Huang, D.; Lin, X.; Wang, Y. Org. Biomol. Chem. 2012, 10, 4467.

    29. [29]

      [29] González-Olvera, R.; Demare, P.; Regla, I.; Juaristi, E. ARKIVOC 2008, vi, 61.

    30. [30]

      [30] Xin, J.; Chang, L.; Hou, Z.; Shang, D.; Liu, X.; Feng, X. Chem. Eur. J. 2008, 14, 3177.

    31. [31]

      [31] Li, Z. Y.; Xing, H. J.; Huang, G. L.; Sun, X. Q.; Jiang, J. L.; Wang, L. Y. Sci. China Chem. 2011, 54, 1726.

    32. [32]

      [32] Saha, S.; Moorthy, J. N. J. Org. Chem. 2011, 76, 396.

    33. [33]

      [33] Wu, Y.-Y.; Chai, Z.; Liu, X.-Y.; Zhao, G.; Wang, S.-W. Eur. J. Org. Chem. 2009, 904.

    34. [34]

      [34] Sohn, J.-H.; Choi, H.-M.; Lee, S.; Joung, S.; Lee, H.-Y. Eur. J. Org. Chem. 2009, 3858.

    35. [35]

      [35] (a) List, B.; Lerner, R. A.; Barbas, C. F. J. Am. Chem. Soc. 2000, 122, 2395. (b) Ahrendt, K. A.; Borths, C. J.; MacMillan, D. W. C. J. Am. Chem. Soc. 2000, 122, 4243. (c) Yang, D. Acc. Chem. Res. 2004, 37, 497. (d) Shi, Y. Acc. Chem. Res. 2004, 37, 488. (d) Wang, Y.; Han, R. G.; Zhao, Y. L.; Yang, S.; Xu, P. F. Dixon, D. J. Angew. Chem., Int. Ed. 2009, 48, 9834.

    36. [36]

      [36] Wang, Y.; Yang, H.; Yu, J.; Miao, Z.; Chen, R. Adv. Synth. Catal. 2009, 351, 3057.

    37. [37]

      [37] Wang, Y.; Yu, J.; Miao, Z.; Chen, R. Org. Biomol. Chem. 2011, 9, 3050.

    38. [38]

      [38] Frings, M.; Thomé, I.; Bolm, C. Beilstein J. Org. Chem. 2012, 8, 1443.

    39. [39]

      [39] Ding, D.; Zhao, C.-G. Eur. J. Org. Chem. 2010, 2010, 3802.

    40. [40]

      [40] Xu, D.-Z.; Li, H.; Wang, Y. Tetrahedron 2012, 68, 7867.

    41. [41]

      [41] An, D.; Fan, Y.-S.; Gao, Y.; Zhu, Z.-Q.; Zheng, L.-Y.; Zhang, S.-Q. Eur. J. Org. Chem. 2014, 2014, 301.

  • 加载中
    1. [1]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    2. [2]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    3. [3]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    4. [4]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    5. [5]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    6. [6]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    7. [7]

      Qianwen HanTenglong ZhuQiuqiu LüMahong YuQin Zhong . Performance and Electrochemical Asymmetry Optimization of Hydrogen Electrode Supported Reversible Solid Oxide Cell. Acta Physico-Chimica Sinica, 2025, 41(1): 100005-0. doi: 10.3866/PKU.WHXB202309037

    8. [8]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    9. [9]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    10. [10]

      Weicheng FengJingcheng YuYilan YangYige GuoGeng ZouXiaoju LiuZhou ChenKun DongYuefeng SongGuoxiong WangXinhe Bao . Regulating the High Entropy Component of Double Perovskite for High-Temperature Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(6): 2306013-0. doi: 10.3866/PKU.WHXB202306013

    11. [11]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    12. [12]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    13. [13]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(11): 0-0.

    14. [14]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    15. [15]

      Wei SunYongjing WangKun XiangSaishuai BaiHaitao WangJing ZouArramelJizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015

    16. [16]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    17. [17]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    18. [18]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    19. [19]

      Wenjuan TanYong YeXiujuan SunBei LiuJiajia ZhouHailong LiaoXiulin WuRui DingEnhui LiuPing Gao . Building P-Poor Ni2P and P-Rich CoP3 Heterojunction Structure with Cation Vacancy for Enhanced Electrocatalytic Hydrazine and Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(6): 2306054-0. doi: 10.3866/PKU.WHXB202306054

    20. [20]

      Yanting HUANGHua XIANGMei PAN . Construction and application of multi-component systems based on luminous copper nanoclusters. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2075-2090. doi: 10.11862/CJIC.20240196

Metrics
  • PDF Downloads(0)
  • Abstract views(1019)
  • HTML views(195)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return