Citation: Chen Zhonghang, Han Zongsu, Shi Wei, Cheng Peng. Design, Synthesis and Applications of Chiral Metal-Organic Frameworks[J]. Acta Chimica Sinica, ;2020, 78(12): 1336-1348. doi: 10.6023/A20090439 shu

Design, Synthesis and Applications of Chiral Metal-Organic Frameworks

  • Corresponding author: Shi Wei, shiwei@nankai.edu.cn
  • Received Date: 23 September 2020
    Available Online: 9 December 2020

    Fund Project: the Fundamental Research Funds for the Central Universities, Nankai University 63201043the Fundamental Research Funds for the Central Universities, Nankai University 63201016the Natural Science Foundation of Tianjin 18JCJQJC47200Project supported by the National Natural Science Foundation of China (No. 21861130354), the Natural Science Foundation of Tianjin (No. 18JCJQJC47200) and the Fundamental Research Funds for the Central Universities, Nankai University (Nos. 63201016, 63201043)the National Natural Science Foundation of China 21861130354

Figures(12)

  • Chiral metal-organic frameworks have shown important applications in the identification and separation of enantiomers and asymmetric heterogeneous catalysis, owing to their structural diversities and multifunctionalities. Recently, the applications of chiral metal-organic frameworks have been expanded to other research fields, such as circularly polarized luminescence and chiral ferroelectrics. Compared with achiral metal-organic frameworks, it is highly challenging to synthesize chiral metal-organic frameworks, because the chirality introduction usually results in the difficulty of the crystallization and purification process for the design of chiral metal-organic frameworks. In this review, we discussed three main strategies that have been utilized to construct chiral metal-organic frameworks, including direct synthesis by chiral ligands, spontaneous resolution with achiral ligands or in the presence of chiral-template, and post-synthetic modification of achiral metal-organic frameworks. Moreover, the recent research progresses of chiral metal-organic frameworks in chiral molecular recognition, enantiomer separation, asymmetric catalysis, circularly polarized luminescence, and chiral ferroelectrics are discussed.
  • 加载中
    1. [1]

      Lin, G.-Q.; Sun, X.-W.; Hong, R. Chiral Synthesis: Basic Research and Progress, Science Press, Beijing, 2018 (in Chinese).

    2. [2]

      Wang, Y.; Xu, J.; Wang, Y. W.; Chen, H. Y. Chem. Soc. Rev. 2013, 42, 2930.

    3. [3]

      Zhao, K.-H.; Zhong, X.-H. Optics, Peking University Press, Beijing, 2018 (in Chinese).

    4. [4]

      You, Q.-D.; Lin, G.-Q. Chiral Drugs: Research and Evaluation, Chemical Industry Press, Beijing, 2011 (in Chinese).

    5. [5]

      Zhou, Q. L. Privileged Chiral Ligands and Catalysts, Wiley-VCH, 2011.

    6. [6]

      Zhang, L.; Qin, L.; Wang, X.; Cao, H.; Liu, M. Adv. Mater. 2014, 26, 6959.

    7. [7]

      Constable, E. C.; Housecroft, C. E. Chem. Soc. Rev. 2013, 42, 1429.

    8. [8]

      Furukawa, H.; Cordova, K. E.; O'Keeffe, M.; Yaghi, O. M. Science 2013, 341, 1230444.

    9. [9]

      Chen, X.-M.; Zhang, J.-P. et al., Metal-Organic Frameworks, Chemical Industry Press, Beijing, 2017 (in Chinese).

    10. [10]

      Bloch, E. D.; Queen, W. L.; Krishna, R.; Zadrozny, J. M.; Brown, C. M.; Long, J. R. Science 2012, 335, 1606.

    11. [11]

      Wu, S. Y.; Min, H.; Shi, W.; Cheng, P. Adv. Mater. 2020, 32, 1805871.

    12. [12]

      Zhu, L.; Liu, X. Q.; Jiang, H. L.; Sun, L. B. Chem. Rev. 2017, 117, 8129.

    13. [13]

      Cai, G.; Ding, M.; Wu, Q.; Jiang, H.-L. Natl. Sci. Rev. 2020, 7, 37.

    14. [14]

      Pan, Y.; Qian, Y.; Zheng, X.; Chu, S.-Q.; Yang, Y.; Ding, C.; Wang, X.; Yu, S.-H.; Jiang, H.-L. Natl. Sci. Rev. 2020, doi: 10.1093/nsr/nwaa224.  doi: 10.1093/nsr/nwaa224.

    15. [15]

      Huang, G.; Chen, Y.-Z.; Jiang, H.-L. Acta Chim. Sinica 2016, 74, 113 (in Chinese).

    16. [16]

      Wu, Q.-Y.; Zhang, C.-X.; Sun, K.; Jiang, H.-L. Acta Chim. Sinica 2020, 78, 688 (in Chinese).

    17. [17]

      Batten, S. R.; Champness, N. R.; Chen, X. M.; Garcia-Martinez, J.; Kitagawa, S.; hrstrm, L.; O’Keeffe, M.; Suh, M. P.; Reedijk, J. Pure Appl. Chem. 2013, 85, 1715.

    18. [18]

      Yaghi, O. M.; Kalmutzki, M. J.; Diercks, C. S. Introduction to Reticular Chemistry: Metal-Organic Frameworks and Covalent Organic Frameworks, Wiley-VCH, Weinheim, 2019.

    19. [19]

      Zhao, X.; Wang, Y. X.; Li, D. S.; Bu, X. H.; Feng, P. Y. Adv. Mater. 2018, 30, 1705189.

    20. [20]

      Li, X.; Wu, J.; He, C.; Meng, Q.; Duan, C. Small 2019, 15, 1970171.

    21. [21]

      Ma, L. Q.; Abney, C.; Lin, W. B. Chem. Soc. Rev. 2009, 38, 1248.

    22. [22]

      Liu, Y.; Xuan, W. M.; Cui, Y. Adv. Mater. 2010, 22, 4112.

    23. [23]

      Morris, R. E.; Bu, X. H. Nature Chem. 2010, 2, 353.

    24. [24]

      Yoon, M.; Srirambalaji, R.; Kim, K. Chem. Rev. 2012, 112, 1196.

    25. [25]

      Gu, Z. G.; Zhan, C. H.; Zhang, J.; Bu, X. H. Chem. Soc. Rev. 2016, 45, 3122.

    26. [26]

      Han, Z. S.; Shi, W.; Cheng, P. Chin. Chem. Lett. 2018, 29, 819.

    27. [27]

      Liu, Y.; Li, W.; Zhang, J. Natl. Sci. Rev. 2017, 4, 326.

    28. [28]

      Zhao, X.; Nguyen, E. T.; Hong, A. N.; Feng, P.; Bu, X. Angew. Chem. Int. Ed. 2018, 57, 7101.

    29. [29]

      梅佩, 张媛媛, 冯霄, 化学学报, 2020, 78, 1041.

    30. [30]

      Corella-Ochoa, M. N.; Tapia, J. B.; Rubin, H. N.; Lillo, V.; González-Cobos, J. J. Am. Chem. Soc. 2019, 141, 14306.

    31. [31]

      Vaidhyanathan, R.; Bradshaw, D.; Rebilly, J.-N.; Barrio, J.-P.; Gould, J.-A.; Berry, N.-G.; Rosseinsky, M.-J. Angew. Chem. Int. Ed. 2006, 45, 6495.

    32. [32]

      Cai, H.; Huang, Y.-L.; Li, D. Coord. Chem. Rev. 2019, 378, 207.

    33. [33]

      Xu, Z. X.; Liu, L.; Zhang, J. Inorg. Chem. 2016, 55, 6355.

    34. [34]

      Liu, J.; Wang, F.; Zhang, J. Cryst. Growth Des. 2017, 17, 5393.

    35. [35]

      Zhang, S. Y.; Yang, C. X.; Shi, W.; Yan, X.-P.; Cheng, P.; Wojtas, L.; Zaworotko, M. J. Chem 2017, 3, 281.

    36. [36]

      Wanderley, M. M.; Wang, C.; Wu, C. D.; Lin, W. J. Am. Chem. Soc. 2012, 134, 9050.

    37. [37]

      Cortijo, M.; Valentín-Pérez, .; Rouzières, M.; Clérac, R.; Rosa, P.; Hillard, E. A. Crystals 2020, 10, 472.

    38. [38]

      Zhang, X.; Xu, N.; Zhang, S.-Y.; Zhao, X.-Q.; Cheng, P. RSC Adv. 2014, 4, 40643.

    39. [39]

      Wen, Q.; Tenenholtz, S.; Shimon, L.; Omri, B.-E.; Beck, L. M.; Houben, L.; Cohen, S. R.; Feldman, Y.; Oron, D.; Lahav, M.; Boom, M. E. J. Am. Chem. Soc. 2020, 142, 14210.

    40. [40]

      Zuo, T.; Luo, D.; Huang, Y. L.; Li, Y. Y.; Zhou, X. P.; Li, D. Chem. Eur. J. 2020, 26, 1936.

    41. [41]

      Han, Y.-H.; Liu, Y.-C.; Xing, X.-S.; Tian, C.-B.; Lin, P.; Du, S.-W. Chem. Commun. 2015, 51, 14481.

    42. [42]

      Das, S.; Xu, S.; Ben, T.; Qiu, S. Angew. Chem. Int. Ed. 2018, 57, 8629.

    43. [43]

      Kou, W.-T.; Yang, C.-X.; Yan, X.-P. J. Mater. Chem. A 2018, 6, 17861.

    44. [44]

      Lu, Y.; Zhang, H.; Chan, J. Y.; Ou, R.; Zhu, H.; Forsyth, M.; Marijanovic, E. M.; Doherty, C. M.; Marriott, P. J.; Banaszak Holl, M. M.; Wang, H. Angew. Chem. Int. Ed. 2019, 131, 17084.

    45. [45]

      Tan, C.; Han, X.; Li, Z.; Liu, Y.; Cui, Y. J. Am. Chem. Soc. 2018, 140, 16229.

    46. [46]

      Han, Z.; Wang, K.; Guo, Y.; Chen, W.; Zhang, J.; Zhang, X.; Siligardi, G.; Yang, S.; Zhou, Z.; Sun, P.; Shi, W.; Cheng, P. Nat. Commun. 2019, 10, 5117.

    47. [47]

      Zhao, Y. W.; Zhang, X. M. J. Mater. Chem. C 2020, 8, 4453.

    48. [48]

      Zhao, Y. W.; Wang, Y.; Zhang, X. M. ACS Appl. Mater. Interfaces 2017, 9, 20991.

    49. [49]

      Franks, M. E.; Macpherson, G. R.; Figg, W. D. The Lancet 2004, 363, 1802.

    50. [50]

      Abbas, A.; Wang, Z.-X.; Li, Z.; Jiang, H.; Liu, Y.; Cui, Y. Inorg. Chem. 2018, 57, 8697.

    51. [51]

      Xie, S. M.; Zhang, Z. J.; Wang, Z. Y.; Yuan, L. M. J. Am. Chem. Soc. 2011, 133, 11892.

    52. [52]

      José, N.-S.; Ana, A.-G.; Yolanda, M.-M.; Ganiel, R.-S.; Antypov, D.; Pilar, C.-F.; Rosseinsky, M. J.; Carlos, M.-G. J. Am. Chem. Soc. 2017, 139, 4294.

    53. [53]

      Zhao, J.; Li, H.; Han, Y.; Li, R.; Ding, X.; Feng, X.; Wang, B. J. Mater. Chem. A 2015, 3, 12145.

    54. [54]

      Chan, J. Y.; Zhang, H.; Nolvachai, Y.; Hu, Y.; Zhu, H.; Forsyth, M.; Gu, Q.; Hoke, D. E.; Zhang, X.; Marriot, P. J.; Wang, H. Angew. Chem. Int. Ed. 2018, 57, 17376.

    55. [55]

      Seo, J. S.; Whang. D.; Lee, H.; Jun, S. I.; Oh, J.; Jeon, Y. J.; Kim, K. Nature 2000, 404, 982.

    56. [56]

      Dang, D.; Wu, P.; He, C.; Xie, Z.; Duan, C. J. Am. Chem. Soc. 2010, 132, 14321.

    57. [57]

      Han, Q.; Qi, B.; Ren, W.; He, C.; Niu, J.; Duan, C. Nat. Commun. 2015, 6, 10007.

    58. [58]

      Han, Q.; He, C.; Zhao, M.; Qi, B.; Niu, J.; Duan, C. J. Am. Chem. Soc. 2013, 135, 10186.

    59. [59]

      Fan, Y.; Ren, Y.; Li, J.; Yue, C.; Jiang, H. Inorg. Chem. 2018, 57, 11986.

    60. [60]

      Gong, W.; Chen, X.; Jiang, H.; Chu, D.; Cui, Y.; Liu, Y. J. Am. Chem. Soc. 2019, 141, 7498.

    61. [61]

      Jiang, H.; Zhang, W.; Kang, X.; Cao, Z.; Chen, X.; Liu, Y.; Cui, Y. J. Am. Chem. Soc. 2020, 142, 9642.

    62. [62]

      Sang, Y.; Han, J.; Zhao, T.; Duan, P.; Liu, M. Adv. Mater. 2020, 32, 1900110.

    63. [63]

      Zhao, T.; Han, J.; Duan, P.; Liu, M. Acc. Chem. Res. 2020, 53, 1279.

    64. [64]

      Li, M.; Lin, W.-B.; Fang, L.; Chen, C.-F. Acta Chim. Sinica 2017, 75, 1150 (in Chinese).

    65. [65]

      Chen, S. M.; Chang, L. M.; Yang, X. K.; Luo, T.; Xu, H.; Gu, Z. G.; Zhang, J. ACS Appl. Mater. Interfaces 2019, 11, 31421.

    66. [66]

      Zhao, T.; Han, J.; Jin, X.; Liu, Y.; Liu, M.; Duan, P. Angew. Chem. Int. Ed. 2019, 58, 4978.

    67. [67]

      Zhao, T.; Han, J.; Jin, X.; Zhou, M.; Liu, Y.; Duan, P.; Liu, M. Research 2020, doi: 10.34133/2020/6452123.  doi: 10.34133/2020/6452123.

    68. [68]

      Hu, L.; Li, K.; Shang, W.; Zhu, X.; Liu, M. Angew. Chem. Int. Ed. 2020, 59, 4953.

    69. [69]

      Shang, W.; Zhu, X.; Liang, T.; Du, C.; Hu, L.; Li, T.; Liu, M. Angew. Chem. Int. Ed. 2020, 59, 12811.

    70. [70]

      Shi, P.-P.; Tang, Y.-Y.; Li, P.-F.; Liao, W.-Q.; Wang, Z.-X.; Ye, Q.; Xiong, R.-G. Chem. Soc. Rev. 2016, 45, 3811.

    71. [71]

      Guo, Z.; Cao, R.; Wang, X.; Li, H.; Yuan, W.; Wang, G.; Wu, H.; Li, J. J. Am. Chem. Soc. 2009, 131, 6894.

    72. [72]

      Dong, X. Y.; Li, B.; Ma, B. B.; Li, S. J.; Dong, M. M.; Zhu, Y. Y.; Zang, S. Q.; Song, Y.; Hou, H. W.; Mak, T. C. J. Am. Chem. Soc. 2013, 135, 10214.

    73. [73]

      Mon, M.; Ferrando-Soria, J.; Verdaguer, M.; Train, C.; Paillard, C.; Dkhil, B.; Versace, C.; Bruno, R.; Armentano, D.; Pardo, E. J. Am. Chem. Soc. 2017, 139, 8098.

  • 加载中
    1. [1]

      Dongheng WANGSi LIShuangquan ZANG . Construction of chiral alkynyl silver chains and modulation of chiral optical properties. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 131-140. doi: 10.11862/CJIC.20240379

    2. [2]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    3. [3]

      Simin Fang Hong Wu Sizhe Sheng Lingling Li Yuxi Wang Hongchun Li Jun Jiang . The Food Kingdom Lecture Series: The Science behind Color. University Chemistry, 2024, 39(9): 177-182. doi: 10.12461/PKU.DXHX202402012

    4. [4]

      Laiying Zhang Yaxian Zhu . Exploring the Silver Family. University Chemistry, 2024, 39(9): 1-4. doi: 10.12461/PKU.DXHX202409015

    5. [5]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    6. [6]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    7. [7]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    8. [8]

      Wenjie SHIFan LUMengwei CHENJin WANGYingfeng HAN . Synthesis and host-guest properties of imidazolium-functionalized zirconium metal-organic cage. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 105-113. doi: 10.11862/CJIC.20240360

    9. [9]

      Qiuting Zhang Fan Wu Jin Liu Zian Lin . Chromatographic Stationary Phase and Chiral Separation Using Frame Materials. University Chemistry, 2025, 40(4): 291-298. doi: 10.12461/PKU.DXHX202405174

    10. [10]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    11. [11]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    12. [12]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    13. [13]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    14. [14]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    15. [15]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    16. [16]

      Chen LUQinlong HONGHaixia ZHANGJian ZHANG . Syntheses, structures, and properties of copper-iodine cluster-based boron imidazolate framework materials. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 149-154. doi: 10.11862/CJIC.20240407

    17. [17]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    18. [18]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    19. [19]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    20. [20]

      Xiaofang DONGYue YANGShen WANGXiaofang HAOYuxia WANGPeng CHENG . Research progress of conductive metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 14-34. doi: 10.11862/CJIC.20240388

Metrics
  • PDF Downloads(242)
  • Abstract views(8103)
  • HTML views(2082)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return