Citation: Huang Hao, Lin Huaxin, Wang Min, Liao Jian. Copper-Catalyzed Enantioselective Aminoboration of Styrenes with 1, 2-Benzisoxazole as Nitrogen Source[J]. Acta Chimica Sinica, ;2020, 78(11): 1229-1234. doi: 10.6023/A20090424 shu

Copper-Catalyzed Enantioselective Aminoboration of Styrenes with 1, 2-Benzisoxazole as Nitrogen Source

  • Corresponding author: Liao Jian, jliao@cib.ac.cn
  • Received Date: 14 September 2020
    Available Online: 28 October 2020

    Fund Project: the Biological Resources Programme, Chinese Academy of Sciences KFJ-BRP-008the National Nature Science Foundation of China 21871251Project supported by the National Nature Science Foundation of China (No. 21871251) and the Biological Resources Programme, Chinese Academy of Sciences (No. KFJ-BRP-008)

Figures(4)

  • Organoboron compounds are important intermediates in organic synthesis because of their high utilities for C—C and C—X bond formations. Transition metal-catalyzed borylative difunctionalization of alkenes, which can simultaneously introduce C—B, C—C or C—X bonds, could directly construct highly functionalized organoboron in one step. Among these reactions, copper catalyzed enantioselective aminoboration of styrenes is an efficient approach to generate enantioriched β-aminoboronate which is a class of useful chiral compounds. In this work, employing styrenes as substrates, 1, 2-benzisoxazole as an electrophilic primary amine source, bis(pinacolato)diboron (B2pin2) as boron source and LiOCH3 as base, an enantioselective Cu-catalyzed aminoboration of styrenes by using a chiral sulfoxide-phosphine (SOP) ligand was developed, and a board range of chiral β-aminoalkylboranes, which could be readily converted to a class of valuable β-hydroxylalkylamines, were accessed with high yields and ee values. A general procedure for this aminoboration of styrenes is described in the following: in a glove box, CuI (0.05 mmol), chiral sulfoxide phosphine ligand L1 (0.06 mmol), and 2 mL of anhydrous tetrahydrofuran were added into a flame-dried tube. The resulting mixture was stirred at room temperature for 30 min. Then bis(pinacolato)diboron (B2pin2) (0.75 mmol), LiOCH3 (1.25 mmol), styrene 1 (0.5 mmol), 1, 2-benzisoxazole (0.75 mmol) and another 2 mL of THF were added into the reaction system in sequence. The reaction tube was removed out from the glove box and stirred at 20 ℃ for 12 h. After the reaction was finished, the NMR yield was firstly determined with dimethyl terephthalate (9.7 mg, 0.05 mmol) as internal standard, then, the crude product was recovered and purified with a preparative TLC which was alkalized with triethylamine to give the desired β-aminoboronates in moderate to good yields (47%~84%) and enantioselectivities (81%~99%). To demonstrate the utility of this reaction, β-boronate primary amine could be easily obtained by removing the Schiff base group of β-aminoboronate 3 under the methanol solution of hydroxylamine hydrochloride, which could be further oxidized to give corresponding chiral β-amino alcohol in moderate yield (48%).
  • 加载中
    1. [1]

    2. [2]

      (a) Gorovoy, A. S.; Gozhina, O.; Svendsen, J.-S.; Tetz, G. V.; Domorad, A.; Tetz, V. V.; Lejon, T. J. Pept. Sci. 2013, 19, 613. (b) Gorovoy, A. S.; Gozhina, O. V.; Svendsen, J. S.; Domorad, A. A.; Tetz, G. V.; Tetz, V. V.; Lejon, T. Chem. Biol. Drug Des. 2013, 81, 408.

    3. [3]

      (a) Solé, G.; Gulyás, H.; Fernández, E. Chem. Commun. 2012, 48, 3769. (b) He, Z. T.; Zhao, Y. S.; Tian, P.; Wang, C. C.; Dong, H. Q.; Lin, G. Q. Org. Lett. 2014, 16, 1426. (c) Takeda, Y.; Kuroda, A.; Sameera, W. M. C.; Morokuma, K.; Minakata, S. Chem. Sci. 2016, 7, 6141. (d) Park, J.; Lee, Y.; Kim, J.; Cho, S. H. Org. Lett. 2016, 18, 1210. (e) Kim, J.; Ko, K.; Cho, S. H. Angew. Chem., Int. Ed. 2017, 56, 11584. (f) Li, X.; Hall, D. G. Angew. Chem., Int. Ed. 2018, 57, 10304. (g) Kim, J.; Hwang, C.; Kim, Y.; Cho, S. H. Org. Process Res. Dev. 2019, 23, 1663. (h) Kim, J.; Shin, M.; Cho, S. H. ACS Catal. 2019, 9, 8503. (i) Li, X.; Hall, D. G. J. Am. Chem. Soc. 2020, 142, 9063.

    4. [4]

    5. [5]

      (a) Matsuda, N.; Hirano, K.; Satoh, T.; Miura, M. J. Am. Chem. Soc. 2013, 135, 4934. (b) Sakae, R.; Matsuda, N.; Hirano, K.; Satoh, T.; Miura, M. Org. Lett. 2014, 16, 1228. (c) Parra, A.; Amenos, L.; Guisan-Ceinos, M.; Lopez, A.; Garcia Ruano, J. L.; Tortosa, M. J. Am. Chem. Soc. 2014, 136, 15833. (d) Sakae, R.; Hirano, K.; Miura, M. J. Am. Chem. Soc. 2015, 137, 6460. (e) Sakae, R.; Hirano, K.; Satoh, T.; Miura, M. Angew. Chem., Int. Ed. 2015, 54, 613. (f) Kato, K.; Hirano, K.; Miura, M. Angew. Chem., Int. Ed. 2016, 55, 14400. (g) Nishikawa, D.; Hirano, K.; Miura, M. Org. Lett. 2016, 18, 4856. (h) Jiang, H. C.; Tang, X. Y.; Shi, M. Chem. Commun. 2016, 52, 5273. (i) Huo, J.; Xue, Y.; Wang, J. Chem. Commun. 2018, 54, 12266. (j) Kato, K.; Hirano, K.; Miura, M. Chem. Eur. J. 2018, 24, 5775.

    6. [6]

      (a) Guo, S.; Yang, J. C.; Buchwald, S. L. J. Am. Chem. Soc. 2018, 140, 15976. (b) Feng, S.; Hao, H.; Liu, P.; Buchwald, S. L. ACS Catal. 2019, 10, 282. (c) Guo, S.; Zhu, J.; Buchwald, S. L. Angew. Chem., Int. Ed. 2020, 59, 20841.

    7. [7]

      (a) Casey, M. L.; Kemp, D. S.; Paul, K. G.; Cox, D. J. Org. Chem. 1973, 38, 2294.

    8. [8]

    9. [9]

      (a) Noshita, M.; Shimizu, Y.; Morimoto, H.; Ohshima, T. Org. Lett. 2016, 18, 6062.

    10. [10]

      (a) Laitar, D. S.; Tsui, E. Y.; Sadighi, J. P. Organometallics 2006, 25, 2405. (b) Jiang, L.; Cao, P.; Wang, M.; Chen, B.; Wang, B.; Liao, J. Angew. Chem., Int. Ed. 2016, 55, 13854. (c) Tobisch, S. Chem. Eur. J. 2017, 23, 17800.

  • 加载中
    1. [1]

      Pengzi Wang Wenjing Xiao Jiarong Chen . Copper-Catalyzed C―O Bond Formation by Kharasch-Sosnovsky-Type Reaction. University Chemistry, 2025, 40(4): 239-244. doi: 10.12461/PKU.DXHX202406090

    2. [2]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    3. [3]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    4. [4]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    5. [5]

      Zeyi Yan Ruitao Liu Xinyu Qi Yuxiang Zhang Lulu Sun Xiangyuan Li Anchao Feng . Exploration of Suspension Polymerization: Preparation and Fluorescence Stability of Perovskite Polystyrene Microbeads. University Chemistry, 2025, 40(4): 72-79. doi: 10.12461/PKU.DXHX202405110

    6. [6]

      Chen LUQinlong HONGHaixia ZHANGJian ZHANG . Syntheses, structures, and properties of copper-iodine cluster-based boron imidazolate framework materials. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 149-154. doi: 10.11862/CJIC.20240407

    7. [7]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    8. [8]

      Yifeng TANPing CAOKai MAJingtong LIYuheng WANG . Synthesis of pentaerythritol tetra(2-ethylthylhexoate) catalyzed by h-MoO3/SiO2. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2155-2162. doi: 10.11862/CJIC.20240147

    9. [9]

      Zhongyan Cao Youzhi Xu Menghua Li Xiao Xiao Xianqiang Kong Deyun Qian . Electrochemically Driven Denitrative Borylation and Fluorosulfonylation of Nitroarenes. University Chemistry, 2025, 40(4): 277-281. doi: 10.12461/PKU.DXHX202407017

    10. [10]

      Yi Yang Xin Zhou Miaoli Gu Bei Cheng Zhen Wu Jianjun Zhang . S型ZnO/CdIn2S4光催化剂制备H2O2偶联苄胺氧化的超快电子转移飞秒吸收光谱研究. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064

    11. [11]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    12. [12]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    13. [13]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    14. [14]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    15. [15]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    16. [16]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    17. [17]

      Xiuyun Wang Jiashuo Cheng Yiming Wang Haoyu Wu Yan Su Yuzhuo Gao Xiaoyu Liu Mingyu Zhao Chunyan Wang Miao Cui Wenfeng Jiang . Improvement of Sodium Ferric Ethylenediaminetetraacetate (NaFeEDTA) Iron Supplement Preparation Experiment. University Chemistry, 2024, 39(2): 340-346. doi: 10.3866/PKU.DXHX202308067

    18. [18]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    19. [19]

      Yongpo Zhang Xinfeng Li Yafei Song Mengyao Sun Congcong Yin Chunyan Gao Jinzhong Zhao . Synthesis of Chlorine-Bridged Binuclear Cu(I) Complexes Based on Conjugation-Driven Cu(II) Oxidized Secondary Amines. University Chemistry, 2024, 39(5): 44-51. doi: 10.3866/PKU.DXHX202309092

    20. [20]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

Metrics
  • PDF Downloads(5)
  • Abstract views(748)
  • HTML views(85)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return