Citation: Liu Hongwen, Zhu Longmin, Lou Xiaofeng, Yuan Lin, Zhang Xiao-Bing. A Two-Photon Fluorescent Probe for Specific Imaging of Furin Activity in Living Cells and Tissues[J]. Acta Chimica Sinica, ;2020, 78(11): 1240-1245. doi: 10.6023/A20070323 shu

A Two-Photon Fluorescent Probe for Specific Imaging of Furin Activity in Living Cells and Tissues

  • Corresponding author: Zhang Xiao-Bing, xbzhang@hnu.edu.cn
  • Received Date: 22 July 2020
    Available Online: 27 July 2020

    Fund Project: the National Natural Science Foundation of China 21890744National Key R & D Program of China 2019YFA0210103the National Postdoctoral Program for Innovative Talents BX20180093Project supported by the National Natural Science Foundation of China (Nos. 21890744 and 21877029), National Key R & D Program of China (No.2019YFA0210103), and the National Postdoctoral Program for Innovative Talents (No. BX20180093)the National Natural Science Foundation of China 21877029

Figures(5)

  • Furin, the most characteristic member of the proprotein convertase (PCs), has important biological functions. The expression level of furin is related to many diseases, for example, the occurrence and development of cancer is closely related to the expression level of furin. Although several small-molecule fluorescent probes for furin have been developed, which were designed based on near-infrared dye or one-photon dye. These probes exhibit low Stocks' shift or shallow penetration depth, which leading to self-quenching and strong interference. Two-photon fluorescent probes, which utilize two near-infrared photons as the excitation source, can overcome these problems. Herein, a furin-activatable two-photon fluorescent probe (Nap-F) was developed firstly that allowed for detection and imaging of furin in live cells and tumor tissues. Nap-F consists of a classical two-photon fluorophore (1, 8-naphthalimide), a furin-particular polypeptide sequence RVRR and a self-eliminating linker. Nap-F is water-soluble and in a fluorescence-off state itself due to the inhibited intramolecular charge transfer (ICT). In the absence of furin, no noticeable fluorescence enhancement was detected, even over 3 days in buffer solution, indicating its good stability. Upon the conversion by furin, it displayed a dramatically fluorescence enhancement at 545 nm, and exhibits high specificity and sensitivity to furin. Nap-F was applied for visualizing the difference in the expression level of furin in various cells, demonstrating its capacity of distinguishing some cancer cells from normal cells. Furthermore, Nap-F was utilized to visualize the variation of furin expression level efficiently after immobilization of hypoxia-inducible factor-1 (HIF-1) by CoCl2, with the results indicating that there is a positive correlation between the expression level of furin and the degree of hypoxia in tumor cells. Owing to the excellent property of Nap-F, the probe was also successful utilized to imaging furin activity in tumor tissues. Thus, Nap-F is able to serve as a potential tool for better exploring the intrinsic link between hypoxic physiological environment and cellular carcinogenesis and detecting cancer in preclinical applications.
  • 加载中
    1. [1]

      Steiner, D. F. Curr. Opin. Chem. Biol. 1998, 2, 31.  doi: 10.1016/S1367-5931(98)80033-1

    2. [2]

      Seidah, N. G.; Mayer, G.; Zaid, A.; Rousselet, E.; Nassoury, N.; Poirier, S.; Essalmani, R.; Prat, A. Int. J. Biochem. Cell Biol. 2008, 40, 1111.  doi: 10.1016/j.biocel.2008.01.030

    3. [3]

      Bassi, D. E.; Fu, J.; de Cicco, R. L.; Klein-Szanto, A. J. P. Mol. Carcinogen 2005, 44, 151.  doi: 10.1002/mc.20134

    4. [4]

      McMahon, S.; Grondin, F.; McDonal, P. P.; Richard, D. E.; Dubois, C. M. J. Biol. Chem. 2005, 280, 6561.  doi: 10.1074/jbc.M413248200

    5. [5]

      Zhang, J.; Liu, H.-W.; Hu, X.-X.; Li, J.; Liang, L.-H.; Zhang, X.-B.; Tan, W. Anal. Chem. 2015, 87, 11832.  doi: 10.1021/acs.analchem.5b03336

    6. [6]

      Li, X.; Gao, X.; Shi, W.; Ma, H. Chem. Rev. 2014, 114, 590.  doi: 10.1021/cr300508p

    7. [7]

      Yang, L.; Liu, B.; Li, N.; Tang, B. Acta Chim. Sinica, 2017, 75, 1047. (in Chinese).
       

    8. [8]

      Yang, Z.; He, Y.; Dai, B.; Dou, B.; Wang, J.; Peng, X. Acta Chim. Sinica, 2011, 69, 445(in Chinese).
       

    9. [9]

      Guan, X.; Wang, L.; Li, Z.; Liu, M.; Wang, K.; Lin, B.; Yang, X.; Lai, S.; Lei, Z.. Acta Chim. Sinica, 2019, 77, 1036(in Chinese).
       

    10. [10]

      Hou, J.; Li, K.; Qin, C. Yu, X.; Chin. J. Org. Chem. 2018, 38, 612(in Chinese).

    11. [11]

      Liu, H.-W.; Chen, L.; Xu, C.; Li, Z.; Zhang, H.; Zhang, X.-B.; Tan, W. Chem. Soc. Rev. 2018, 47, 7140.  doi: 10.1039/C7CS00862G

    12. [12]

      Zhu, L.; Liu, H.-W.; Yang, Y.; Hu, X.-X.; Li, K.; Xu, S.; Li, J.-B.; Ke, G.; Zhang, X.-B. Anal. Chem. 2019, 91, 9682.  doi: 10.1021/acs.analchem.9b01220

    13. [13]

      Li, K.; Hu, X.-X.; Liu, H.-W.; Xu, S.; Huan, S.-Y.; Li, J.-B.; Deng, T.-G.; Zhang, X.-B. Anal. Chem. 2018, 90, 11680.  doi: 10.1021/acs.analchem.8b03335

    14. [14]

      Zhao, X.; Lv, G.; Peng, Y.; Liu, Q.; Li, X.; Wang, S.; Li, K.; Qiu, L.; Lin, J. ChemBioChem 2018, 19, 1060.  doi: 10.1002/cbic.201800015

    15. [15]

      Mu, J.; Liu, F.; Rajab, M. S.; Shi, M.; Li, S.; Goh, C.; Lu, L.; Xu, Q.-H.; Liu, B.; Ng, L. G., Xing B. Angew. Chem. Int. Ed. 2014, 53, 14357.  doi: 10.1002/anie.201407182

    16. [16]

      Liu, X.; Liang, G. Chem. Commun. 2017, 53, 1037.  doi: 10.1039/C6CC09106G

    17. [17]

      Liu, H.-W.; Liu, Y.; Wang, P.; Zhang, X.-B. Methods Appl. Fluoresc. 2017, 5, 012003.  doi: 10.1088/2050-6120/aa61b0

    18. [18]

      Kim, H.; Cho, B. Chem. Rev. 2015, 115, 5014.  doi: 10.1021/cr5004425

    19. [19]

      Kim, H.; Cho, B. Acc. Chem. Res. 2009, 42, 863.  doi: 10.1021/ar800185u

    20. [20]

      Liu, H.-W.; Zhang, X.-B.; Zhang, J.; Wang, Q.-Q.; Hu, X.-X.; Wang, P.; Tan, W. Anal. Chem. 2015, 87, 8896.  doi: 10.1021/acs.analchem.5b02021

    21. [21]

      Huang, C.; Chen, H.; Li, F. An, S. Chin. J. Org. Chem. 2019, 39, 2467(in Chinese).

    22. [22]

      Dragulescu-Andrasi, A.; Kothapalli, S.-R.; Tikhomirov, G. A.; Rao, J.; Gambhir, S. S. J. Am. Chem. Soc. 2013, 135, 11015.  doi: 10.1021/ja4010078

    23. [23]

      Yuan, Y.; Zhang, J.; Cao, Q.; An, L.; Liang, G. Anal. Chem. 2015, 87, 6180.  doi: 10.1021/acs.analchem.5b01656

    24. [24]

      Xu, S.; Liu, H.-W.; Hu, X.-X.; Huan, S.-Y.; Zhang, J.; Liu, Y.-C.; Yuan, L.; Qu, F.-L.; Zhang, X.-B.; Tan, W. Anal. Chem. 2017, 89, 7641.  doi: 10.1021/acs.analchem.7b01561

    25. [25]

      Thorn-Seshold, O.; Vargas-Sanchez, M.; McKeon, S.; Hasserodt, J. Chem. Commun. 2012, 48, 6253.  doi: 10.1039/c2cc32227g

    26. [26]

      Ou-Yang, J.; Li, Y.-F.; Wu, P.; Jiang, W.-L.; Liu, H.-W.; Li, C.-Y. ACS Sens. 2018, 3, 1354.  doi: 10.1021/acssensors.8b00274

    27. [27]

      Ma, J.; Evrard, S.; Badiola, I.; Siegfried, G.; Khatib, A. M. Eur. J. Cell Biol., 2017, 96, 457.  doi: 10.1016/j.ejcb.2017.06.001

    28. [28]

      Feng, L.; Li, P.; Hou, J.; Cui, Y.-L.; Tian, X.-G.; Yu, Z.-L.; Cui, J.-N.; Wang, C.; Huo, X.-K.; Ning, J., Ma X.-C. Anal. Chem. 2018, 90, 13341.  doi: 10.1021/acs.analchem.8b02857

  • 加载中
    1. [1]

      Qi Wang Yicong Gao Feng Lu Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141

    2. [2]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    3. [3]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    4. [4]

      Jiahui CHENTingting ZHENGXiuyun ZHANGWei LÜ . Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106

    5. [5]

      Yu SUXinlian FANYao YINLin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126

    6. [6]

      Xin Lv Hongxing Zhang Kaibo Duan Wenhui Dai Zhihui Wen Wei Guo Junsheng Hao . Lighting the Way Against Cancer: Photodynamic Therapy. University Chemistry, 2024, 39(5): 70-79. doi: 10.3866/PKU.DXHX202309090

    7. [7]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    8. [8]

      Yuan ZHUXiaoda ZHANGShasha WANGPeng WEITao YI . Conditionally restricted fluorescent probe for Fe3+ and Cu2+ based on the naphthalimide structure. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 183-192. doi: 10.11862/CJIC.20240232

    9. [9]

      Shuwen SUNGaofeng WANG . Design and synthesis of a Zn(Ⅱ)-based coordination polymer as a fluorescent probe for trace monitoring 2, 4, 6-trinitrophenol. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 753-760. doi: 10.11862/CJIC.20240399

    10. [10]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    11. [11]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    12. [12]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

    13. [13]

      Yang Wang Yunpeng Fu Xiaoji Liu Guotao Zhang Guobin Li Wanqiang Liu Jinglun Wang . Structural Analysis of Nitrile Solutions Based on Infrared Spectroscopy Probes. University Chemistry, 2025, 40(4): 367-374. doi: 10.12461/PKU.DXHX202406113

    14. [14]

      Yan ZHAOXiaokang JIANGZhonghui LIJiaxu WANGHengwei ZHOUHai GUO . Preparation and fluorescence properties of Eu3+-doped CaLaGaO4 red-emitting phosphors. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1861-1868. doi: 10.11862/CJIC.20240242

    15. [15]

      Xinyu Liu Weiran Hu Zhengkai Li Wei Ji Xiao Ni . Algin Lab: Surging Luminescent Sea. University Chemistry, 2024, 39(5): 396-404. doi: 10.3866/PKU.DXHX202312021

    16. [16]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    17. [17]

      Lei Shu Zhengqing Hao Kai Yan Hong Wang Lihua Zhu Fang Chen Nan Wang . Development of a Double-Carbon Related Experiment: Preparation, Characterization and Carbon-Capture Ability of Eggshell-Derived CaO. University Chemistry, 2024, 39(4): 149-156. doi: 10.3866/PKU.DXHX202310134

    18. [18]

      Jin Yan Chengxia Tong Yajie Li Yue Gu Xuejian Qu Shigang Wei Wanchun Zhu Yupeng Guo . Construction of a “Dual Support, Triple Integration” Chemical Safety Practical Education System. University Chemistry, 2024, 39(7): 69-75. doi: 10.12461/PKU.DXHX202405008

    19. [19]

      Linhan Tian Changsheng Lu . Discussion on Sextuple Bonding in Diatomic Motifs of Chromium Family Elements. University Chemistry, 2024, 39(8): 395-402. doi: 10.3866/PKU.DXHX202401056

    20. [20]

      Wei Gao Jinyue Yang Wenwei Zhang . Practice and Exploration of Promoting the “Double Reduction” Work with Popular Science Resources in Universities. University Chemistry, 2024, 39(9): 385-391. doi: 10.3866/PKU.DXHX202311008

Metrics
  • PDF Downloads(15)
  • Abstract views(898)
  • HTML views(123)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return