Citation: Sun Jingjing, Wu Qiurong, Weng Wenqiang, Liu Xiaoqin, Tan Peng, Sun Linbing. Smart Light-responsive CO2 Adsorbents for Regulating Strong Active Sites[J]. Acta Chimica Sinica, ;2020, 78(10): 1082-1088. doi: 10.6023/A20070316 shu

Smart Light-responsive CO2 Adsorbents for Regulating Strong Active Sites

  • Corresponding author: Sun Linbing, lbsun@njtech.edu.cn
  • Received Date: 16 July 2020
    Available Online: 10 August 2020

    Fund Project: The National Natural Science Foundation of China 21676138The National Natural Science Foundation of China 21878149Project supported by the National Science Foundation for Excellent Young Scholars (No. 21722606), the National Natural Science Foundation of China (Nos. 21676138, 21878149, 21808110), and China Postdoctoral Science Foundation (No. 2019T120419)China Postdoctoral Science Foundation 2019T120419The National Science Foundation for Excellent Young Scholars 21722606The National Natural Science Foundation of China 21808110

Figures(5)

  • Light-responsive CO2 adsorbents can effectively adjust their ability to capture CO2 through external light irradiation, and have the advantages of good controllability and high energy efficiency during the adsorption process. However, the currently reported light-responsive CO2 adsorbents can only realize the regulation of weak adsorption sites, and the regulation of strong adsorption sites is still a challenging task. In this work, a light-responsive smart adsorbent was constructed by in situ synthesis, and the light-responsive control of strong adsorption sites for CO2 was realized. The construction of adsorbent was achieved by introducing the azobenzene derivative with cis and trans isomers and silane coupling agent containing primary amines into mesoporous silica. The characterization results show that the adsorbents have uniform pore channels, and primary amine and light-responsive groups are dispersed on the pore walls. The strong interaction between primary amine and CO2 can lead to the selective adsorption of CO2, while azobenzene as a molecular switch can regulate the adsorption performance of primary amine. Before light irradiation, azobenzene is in trans configuration, which decreases the electrostatic potential of the primary amine, and exposes the active site, thus CO2 can be freely adsorbed; after light irradiation, azobenzene is converted to the cis configuration, which increases the electrostatic potential of the primary amine and shields the active sites. The change amount of adsorption capacity can reach 43%, and this process is reversible. Both the light-responsive properties of azobenzene groups and the adsorptive performances of adsorbents can be well maintained after 5 cycles. Azobenzene in different configuration has distinctive influences on the electrostatic potential of primary amine, thereby achieving the regulation of adsorption ability. This work utilizes the specific interaction between stimuli-responsive groups and target-specific adsorption sites, realizing the regulation of strong active cites for CO2, which gives clues to the development of new smart adsorbents.
  • 加载中
    1. [1]

      Alvarez, R. A.; Zavala-Araiza, D.; Lyon, D. R.; Allen, D. T.; Barkley, Z. R.; Brandt, A. R.; Davis, K. J.; Herndon, S. C.; Jacob, D. J.; Karion, A.; Kort, E. A.; Lamb, B. K.; Lauvaux, T.; Maasakkers, J. D.; Marchese, A. J.; Omara, M.; Pacala, S. W.; Peischl, J.; Robinson, A. L.; Shepson, P. B.; Sweeney, C.; Townsend-Small, A.; Wofsy, S. C.; Hamburg, S. P. Science 2018, 361, 186.
       

    2. [2]

      Yan, T. T.; Xing, G. L.; Ben, T. Acta Chim. Sinica 2018, 76, 366.
       

    3. [3]

      Ding, M. L.; Flaig, R. W.; Jiang, H. L.; Yaghi, O. M. Chem. Soc. Rev. 2019, 48, 2783.  doi: 10.1039/C8CS00829A

    4. [4]

      Liu, Z. L.; Li, W.; Liu, H.; Zhuang, X. D.; Li, S. Acta Chim. Sinica 2019, 77, 323.
       

    5. [5]

      Feng, K. S.; Davis, S. J.; Sun, L. X.; Hubacek, K. Nat. Commun. 2016, 7, 10693.  doi: 10.1038/ncomms10693

    6. [6]

      Chen, Z. Y.; Liu, J. W.; Cui, H.; Zhang, L.; Su, C. Y. Acta Chim. Sinica 2019, 77, 242.
       

    7. [7]

      Nguyen, T. D.; Liu, Y.; Saha, S.; Leung, K. C. F.; Stoddart, J. F.; Zink, J. I. J. Am. Chem. Soc. 2007, 129, 626.  doi: 10.1021/ja065485r

    8. [8]

      Feng, A. H.; Yu, Y.; Yu, Y.; Song, L. X. Acta Chim. Sinica 2018, 76, 757.
       

    9. [9]

      Jia, J. T.; Wang, L.; Zhao, Q.; Sun, F. X.; Zhu, G. S. Acta Chim. Sinica 2013, 71, 1492.
       

    10. [10]

      Liu, B; Lian, Y. H.; Li, Z.; Chen, G. J. Acta Chim. Sinica 2014, 72, 942.
       

    11. [11]

      Qiao, W. Z.; Song, T. Q.; Zhao, B. Chin. J. Chem. 2019, 37, 474.  doi: 10.1002/cjoc.201800587

    12. [12]

      Qi, S. C.; Zhu, R. R.; Liu, X.; Xue, D. M.; Liu, X. Q.; Sun, L. B. CIESC J. 2020, 71, 1666.
       

    13. [13]

      Tan, P.; Jiang, Y.; Qi, S. C.; Gao, X. J.; Liu, X. Q.; Sun, L. B. Engineering 2020, 6, 569.  doi: 10.1016/j.eng.2020.03.005

    14. [14]

      Stuart, M. A. C.; Huck, W. T. S.; Genzer, J.; Muller, M.; Ober, C.; Stamm, M.; Sukhorukov, G. B.; Szleifer, I.; Tsukruk, V. V.; Urban, M.; Winnik, F.; Zauscher, S.; Luzinov, I.; Minko, S. Nat. Mater. 2010, 9, 101.  doi: 10.1038/nmat2614

    15. [15]

      Bian, L.; Li, W.; Wei, Z. Z.; Liu, X. W.; Li, S. Acta Chim. Sinica 2018, 76, 303.
       

    16. [16]

      Xing, Z. M.; Gao, Y. X.; Shi, L. Y.; Liu, X. Q.; Jiang, Y.; Sun, L. B. Chem. Eng. Sci. 2017, 158, 216.  doi: 10.1016/j.ces.2016.10.029

    17. [17]

      Aznar, E.; Oroval, M.; Pascual, L.; Murguia, J. R.; Martinez-Manez, R.; Sancenon, F. Chem. Rev. 2016, 116, 561.  doi: 10.1021/acs.chemrev.5b00456

    18. [18]

      Lee, C. H.; Cheng, S. H.; Huang, I. P.; Souris, J. S.; Yang, C. S.; Mou, C. Y.; Lo, L. W. Angew. Chem. Int. Ed. 2010, 49, 8214.  doi: 10.1002/anie.201002639

    19. [19]

      Li, P.; Xie, G. H.; Kong, X. Y.; Zhang, Z.; Xiao, K.; Wen, L. P.; Jiang, L. Angew. Chem. Int. Ed. 2016, 55, 15637.  doi: 10.1002/anie.201609161

    20. [20]

      Jewell, J.; McCollum, D.; Emmerling, J.; Bertram, C.; Gernaat, D. E. H. J.; Krey, V.; Paroussos, L.; Berger, L.; Fragkiadakis, K.; Keppo, I.; Saadi, N.; Tavoni, M.; van Vuuren, D.; Vinichenko, V.; Riahi, K. Nature 2018, 554, 229.  doi: 10.1038/nature25467

    21. [21]

      Huang, Z. X.; Sednek, C.; Urynowicz, M. A.; Guo, H. G.; Wang, Q. R.; Fallgren, P.; Jin, S.; Jin, Y.; Igwe, U.; Li, S. P. Nat. Commun. 2017, 8, 1329.  doi: 10.1038/s41467-017-01331-8

    22. [22]

      Wriedt, M.; Sculley, J. P.; Yakovenko, A. A.; Ma, Y. G.; Halder, G. J.; Balbuena, P. B.; Zhou, H. C. Angew. Chem. Int. Ed. 2012, 51, 9804.  doi: 10.1002/anie.201202992

    23. [23]

      Cheng, L.; Jiang, Y.; Qi, S. C.; Liu, W.; Shan, S. F.; Tan, P.; Liu, X. Q.; Sun, L. B. Chem. Mater. 2018, 30, 3429.  doi: 10.1021/acs.chemmater.8b01005

    24. [24]

      Wang, M. F.; Yan, M.; Hu, F. L.; Zheng, N.; Yin, X. H.; Huang, Q.; Wang, H. F.; Lang, J. P. J. Mater. Chem. A 2020, 142, 700.

    25. [25]

      Shi, Y. X.; Zhang, W. H.; Abrahanms, B. F.; Braunstein, P.; Lang, J. P. Angew. Chem. Int. Ed. 2019, 58, 9453.  doi: 10.1002/anie.201903757

    26. [26]

      Shi, Y. X.; Chen, H. H.; Zhang, W. H.; Day, G. S.; Lang, J. P.; Zhou, H. C. Chem. Eur. J. 2019, 25, 8543.  doi: 10.1002/chem.201900347

    27. [27]

      Jiang, Y.; Tan, P.; Qi, S. C.; Liu, X. Q.; Yan, J. H.; Fan, F.; Sun, L. B. Angew. Chem. Int. Ed. 2019, 58, 6600.  doi: 10.1002/anie.201900141

    28. [28]

      Li, J. R.; Yu, J. M.; Lu, W. G.; Sun, L. B.; Sculley, J.; Balbuena, P. B.; Zhou, H. C. Nat. Commun. 2013, 4, 2041.  doi: 10.1038/ncomms3041

    29. [29]

      Hao, G. P.; Li, W. C.; Qian, D.; Lu, A. H. Adv. Mater. 2010, 22, 853.  doi: 10.1002/adma.200903765

    30. [30]

      Yagai, S.; Kitamura, A. Chem. Soc. Rev. 2008, 8, 1520.

    31. [31]

      Wang, C.; Guo, Y. S.; Wang, Y. P.; Xu, H. P.; Zhang, X. Chem. Commun. 2009, 36, 5380.
       

    32. [32]

      Li, X. J.; Ma, W.; Li, H. M.; Zhang, Q. H.; Liu, H. W. Coord. Chem. Rev. 2020, 408, 3723.

    33. [33]

      Wu, Q. R.; Tan, P.; Gu, C.; Zhou, R.; Qi, S. C.; Liu, X. Q.; Jiang, Y.; Sun, L. B. Sci. China Mater. 2020, https://doi.org/10.1007/s40843-020-1423-8.

    34. [34]

      Moon, H. J.; Ko, D. Y.; Park, M. H.; Joo, M. K.; Jeong, B. Chem. Soc. Rev. 2012, 41, 4860.  doi: 10.1039/c2cs35078e

    35. [35]

      Park, J.; Yuan, D. Q.; Pham, K. T.; Li, J. R.; Yakovenko, A.; Zhou, H. C. J. Am. Chem. Soc. 2012, 134, 99.  doi: 10.1021/ja209197f

    36. [36]

      Lyndon, R.; Konstas, K.; Ladewig, B. P.; Southon, P. D.; Kepert, C. J.; Hill, M. R. Angew. Chem. Int. Ed. 2013, 125, 3783.  doi: 10.1002/ange.201206359

    37. [37]

      Zhu, J.; Tan, P.; Yang, P. P.; Liu, X. Q.; Jiang, Y.; Sun, L. B. Chem. Commun. 2017, 53, 3281.  doi: 10.1039/C7CC90087B

    38. [38]

      Qi, S. C.; Wu, J. K.; Lu, J.; Yu, G. X.; Zhu, R. R.; Liu, Y.; Liu, X.; Liu, X. Q.; Sun, L. B. J. Mater. Chem. A 2019, 7, 17842.  doi: 10.1039/C9TA04785A

    39. [39]

      Yu, Z. Z.; Li, N.; Zheng, P. P.; Pan, W.; Tang, B. Chem. Commun. 2014, 50, 3494.  doi: 10.1039/C3CC49183H

    40. [40]

      Yue, M. C.; Hoshino, Y.; Ohshiro, Y.; Imamura, K.; Miura, Y. Angew. Chem. Int. Ed. 2014, 53, 2654.  doi: 10.1002/anie.201309758

    41. [41]

      Connolly, B. M.; Aragones-Anglada, M.; Gandara-Loe, J.; Danaf, N. A.; Lamb, D. C.; Mehta, J. P.; Vulpe, D.; Wuttke, S.; Silvestre-Albero, J.; Moghadam, P. Z.; Wheatley, A. E. H.; Fairen-Jimenez, D. Nat. Commun. 2019, 10, 1723.  doi: 10.1038/s41467-019-09339-y

  • 加载中
    1. [1]

      Xianghai Song Xiaoying Liu Zhixiang Ren Xiang Liu Mei Wang Yuanfeng Wu Weiqiang Zhou Zhi Zhu Pengwei Huo . 氮掺杂显著提升BiOBr光催化还原CO2性能研究. Acta Physico-Chimica Sinica, 2025, 41(6): 100055-. doi: 10.1016/j.actphy.2025.100055

    2. [2]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    3. [3]

      Qianqian Zhong Yucui Hao Guotao Yu Lijuan Zhao Jingfu Wang Jian Liu Xiaohua Ren . Comprehensive Experimental Design for the Preparation of the Magnetic Adsorbent Based on Enteromorpha Prolifera and Its Utilization in the Purification of Heavy Metal Ions Wastewater. University Chemistry, 2024, 39(8): 184-190. doi: 10.3866/PKU.DXHX202312013

    4. [4]

      Hui Wang Abdelkader Labidi Menghan Ren Feroz Shaik Chuanyi Wang . 微观结构调控的g-C3N4在光催化NO转化中的最新进展:吸附/活化位点的关键作用. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-. doi: 10.1016/j.actphy.2024.100039

    5. [5]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    6. [6]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    7. [7]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    8. [8]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    9. [9]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    10. [10]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    11. [11]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    12. [12]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    13. [13]

      Shasha Ma Zujin Yang Jianyong Zhang . Facile Synthesis of FeBTC Metal-Organic Gel and Its Adsorption of Cr2O72−: A Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(8): 314-323. doi: 10.3866/PKU.DXHX202401008

    14. [14]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    15. [15]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    16. [16]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    17. [17]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    18. [18]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    19. [19]

      Runhua Chen Qiong Wu Jingchen Luo Xiaolong Zu Shan Zhu Yongfu Sun . 缺陷态二维超薄材料用于光/电催化CO2还原的基础与展望. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-. doi: 10.3866/PKU.WHXB202308052

    20. [20]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

Metrics
  • PDF Downloads(4)
  • Abstract views(1397)
  • HTML views(331)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return