Citation: Zhou Jiashen, Zhang Lin, Zhang Liang. Advances on Mechanism and Drug Discovery of Type-Ⅱ Fatty Acid Biosynthesis Pathway[J]. Acta Chimica Sinica, ;2020, 78(12): 1383-1398. doi: 10.6023/A20070299 shu

Advances on Mechanism and Drug Discovery of Type-Ⅱ Fatty Acid Biosynthesis Pathway

  • Corresponding author: Zhang Liang, liangzhang2014@sjtu.edu.cn
  • Received Date: 8 July 2020
    Available Online: 18 September 2020

    Fund Project: Project supported by the Major Research Plan of the National Natural Science Foundation of China (Training Program) (No. 91853118) and Youth Program of National Natural Science Foundation of China (No. 21722802)the Major Research Plan of the National Natural Science Foundation of China(Training Program) 91853118Youth Program of National Natural Science Foundation of China 21722802

Figures(8)

  • Type-Ⅱ fatty acid biosynthesis pathway (FAS-Ⅱ) is the only essential biosynthesis pathway that producing saturated and unsaturated fatty acids for bacteria and plant cell assembly and cellular metabolism. It utilizes a series of individual enzymes encoded by discrete genes to stepwisely catalyze lipid chain growing carried by the substrate carrier protein-acyl carrier protein (ACP). Due to its indispensable biological role in bacteria growth, as well as the distinct biological regulation mechanisms from mammalian fatty acid biosynthesis (FAS-Ⅰ), the enzymes involved in FAS-Ⅱ have been considered as important anti-pathogenic drug targets for a long time. Hence, investigating the catalysis and dynamic regulation mechanisms of FAS-Ⅱ, developing novel anti-pathogenic drugs against the enzymes involved in FAS-Ⅱ is critical to the field. We here summarize the catalytic mechanism studies and inhibitor discovery work involved in FAS-Ⅱ so far, which may potentially facilitate further understanding of FAS-Ⅱ biological functions as well as antibacterial drug discovery for infectious diseases.
  • 加载中
    1. [1]

      Smith, S.; Witkowski, A.; Joshi, A. K. Prog. Lipid Res. 2003, 42, 289.

    2. [2]

      White, S. W.; Zheng, J.; Zhang, Y. M.; Rock, C.O. Annu. Rev. Biochem. 2005, 74, 791.

    3. [3]

      Cronan, J. E.; Thomas, J. Methods Enzymol. 2009, 459, 395.

    4. [4]

      Anghel, S. I.; Wahli, W. Cell Res. 2007, 17, 486.

    5. [5]

      Clay, H. B.; Parl, A. K.; Mitchell, S. L.; Singh, L.; Bell, L. N.; Murdock, D. G. PLoS One 2016, 11, e0151171.

    6. [6]

      Nathan, C. J. Exp. Med. 2017, 214, 2175.

    7. [7]

      Sukheja, P.; Kumar, P.; Mittal, N.; Li, S. G.; Singleton, E.; Russo, R.; Perryman, A. L.; Shrestha, R.; Awasthi, D.; Husain, S.; Soteropoulos, P.; Brukh, R.; Connell, N.; Freundlich, J. S.; Alland, D. mBio 2017, 8, e02022.

    8. [8]

      Ballinger, E.; Mosior, J.; Hartman, T.; Burns-Huang, K.; Gold, B.; Morris, R.; Goullieux, L.; Blanc, I.; Vaubourgeix, J.; Lagrange, S.; Fraisse, L.; Sans, S.; Couturier, C.; Bacque, E.; Rhee, K.; Scarry, S. M.; Aube, J.; Yang, G.; Ouerfelli, O.; Schnappinger, D.; Ioerger, T. R.; Engelhart, C. A.; McConnell, J. A.; McAulay, K.; Fay, A.; Roubert, C.; Sacchettini, J.; Nathan, C. Science 2019, 363, 6426.

    9. [9]

      Thorell, K.; Lehours, P.; Vale, F. F. Helicobacter 2017, 22 Suppl 1, e12409.

    10. [10]

      Jimenez-Diaz, L.; Caballero, A.; Perez-Hernandez, N.; Segura, A. Microb. Biotechnol. 2017, 10, 103.

    11. [11]

      Babu, M.; Greenblatt, J. F.; Emili, A.; Strynadka, N. C.; Reithmeier, R. A.; Moraes, T. F. Structure 2010, 18, 1450.

    12. [12]

      Ohlrogge, J.; Savage, L.; Jaworski, J.; Voelker, T.; Postbeittenmiller, D. Arch. Biochem. Biophys. 1995, 317, 185.

    13. [13]

      Chan, D. I.; Chu, B. C.; Lau, C. K.; Hunter, H. N.; Byers, D. M.; Vogel, H. J. J. Biol. Chem. 2010, 285, 30558.

    14. [14]

      Dall'aglio, P.; Arthur, C. J.; Williams, C.; Vasilakis, K.; Maple, H. J.; Crosby, J.; Crump, M. P.; Hadfield, A. T. Biochemistry 2011, 50, 5704.

    15. [15]

      Marcella, A. M.; Culbertson, S. J.; Shogren-Knaak, M. A.; Barb, A. W. J. Mol. Biol. 2017, 429, 3763.

    16. [16]

      Keating, D. H.; Carey, M. R.; Cronan, J. E. J. Biol. Chem. 1995, 270, 22229.

    17. [17]

      Bunkoczi, G.; Pasta, S.; Joshi, A.; Wu, X.; Kavanagh, K. L.; Smith, S.; Oppermann, U. Chem. Biol. 2007, 14, 1243.

    18. [18]

      Joseph-McCarthy, D.; Parris, K.; Huang, A.; Failli, A.; Quagliato, D.; Dushin, E. G.; Novikova, E.; Severina, E.; Tuckman, M.; Petersen, P. J.; Dean, C.; Fritz, C. C.; Meshulam, T.; DeCenzo, M.; Dick, L.; McFadyen, I. J.; Somers, W. S.; Lovering, F.; Gilbert, A. M. J. Med. Chem. 2005, 48, 7960.

    19. [19]

      Chu, M.; Mierzwa, R.; Xu, L.; Yang, S. W.; He, L.; Patel, M.; Stafford, J.; Macinga, D.; Black, T.; Chan, T. M.; Gullo, V. Bioorg. Med. Chem. Lett. 2003, 13, 3827.

    20. [20]

      Ruch, F. E.; Vagelos, P. R. J. Biol. Chem. 1973, 248, 8095.

    21. [21]

      Hong, S. K.; Kim, K. H.; Park, J. K.; Jeong, K. W.; Kim, Y.; Kim, E. E. FEBS Lett. 2010, 584, 1240.

    22. [22]

      Lee, W. C.; Park, J.; Balasubramanian, P. K.; Kim, Y. Biochem. Biophys. Res. Commun. 2018, 505, 208.

    23. [23]

      Li, Z.; Huang, Y.; Ge, J.; Fan, H.; Zhou, X.; Li, S.; Bartlam, M.; Wang, H.; Rao, Z. J. Mol. Biol. 2007, 371, 1075.

    24. [24]

      Keatinge-Clay, A. T.; Shelat, A. A.; Savage, D. F.; Tsai, S.-C.; Miercke, L. J. W.; O'Connell, J. D.; Khosla, C.; Stroud, R. M. Structure 2003, 11, 147.

    25. [25]

      Liu, W.; Han, C.; Hu, L.; Chen, K.; Shen, X.; Jiang, H. FEBS Lett. 2006, 580, 697.

    26. [26]

      Kong, Y. H.; Zhang, L.; Yang, Z. Y.; Han, C.; Hu, L. H.; Jiang, H. L.; Shen, X. Acta Pharmacol. Sin. 2008, 29, 870.

    27. [27]

      Kumar, V.; Sharma, A.; Pratap, S.; Kumar, P. Biochimie 2018, 149, 18.

    28. [28]

      Kumar, V.; Sharma, A.; Pratap, S.; Kumar, P. BBA-Proteins Proteom 2018, 1866, 1131.

    29. [29]

      Li, Y.; Florova, G.; Reynolds, K. A. J. Bacteriol. 2005, 187, 3795.

    30. [30]

      Han, L.; Lobo, S.; Reynolds, K. A. J. Bacteriol. 1998, 180, 4481.

    31. [31]

      Tsay, J. T.; Oh, W.; Larson, T. J.; Jackowski, S.; Rock, C. O. J. Biol. Chem. 1992, 267, 6807.

    32. [32]

      Gajiwala, K. S.; Margosiak, S.; Lu, J.; Cortez, J.; Su, Y.; Nie, Z.; Appelt, K. FEBS Lett. 2009, 583, 2939.

    33. [33]

      Yuan, Y.; Sachdeva, M.; Leeds, J. A.; Meredith, T. C. J. Bacteriol. 2012, 194, 5171.

    34. [34]

      Milligan, J. C.; Lee, D. J.; Jackson, D. R.; Schaub, A. J.; Beld, J.; Barajas, J. F.; Hale, J. J.; Luo, R.; Burkart, M. D.; Tsai, S. C. Nat. Chem. Biol. 2019, 15, 669.

    35. [35]

      Mindrebo, J. T.; Patel, A.; Kim, W. E.; Davis, T. D.; Chen, A.; Bartholow, T. G.; La Clair, J. J.; McCammon, J. A.; Noel, J. P.; Burkart, M. D. Nat. Commun. 2020, 11, 1727.

    36. [36]

      Nanson, J. D.; Himiari, Z.; Swarbrick, C. M.; Forwood, J. K. Sci. Rep. 2015, 5, 14797.

    37. [37]

      Price, A. C.; Choi, K. H.; Heath, R. J.; Li, Z.; White, S. W.; Rock, C. O. J. Biol. Chem. 2001, 276, 6551.

    38. [38]

      Wang, J.; Kodali, S.; Lee, S. H.; Galgoci, A.; Painter, R.; Dorso, K.; Racine, F.; Motyl, M.; Hernandez, L.; Tinney, E.; Colletti, S. L.; Herath, K.; Cummings, R.; Salazar, O.; González, I.; Basilio, A.; Vicente, F.; Genilloud, O.; Pelaez, F.; Jayasuriya, H.; Young, K.; Cully, D. F.; Singh, S. B. Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 7612.

    39. [39]

      Daines, R. A.; Pendrak, I.; Sham, K.; Van Aller, G. S.; Konstantinidis, A. K.; Lonsdale, J. T.; Janson, C. A.; Qiu, X.; Brandt, M.; Khandekar, S. S.; Silverman, C.; Head, M. S. J. Med. Chem. 2003, 46, 5.

    40. [40]

      McKinney, D. C.; Eyermann, C. J.; Gu, R. F.; Hu, J.; Kazmirski, S. L.; Lahiri, S. D.; McKenzie, A. R.; Shapiro, A. B.; Breault, G. ACS Infect. Dis. 2016, 2, 456.

    41. [41]

      Wang, J.; Soisson, S. M.; Young, K.; Shoop, W.; Kodali, S.; Galgoci, A.; Painter, R.; Parthasarathy, G.; Tang, Y. S.; Cummings, R.; Ha, S.; Dorso, K.; Motyl, M.; Jayasuriya, H.; Ondeyka, J.; Herath, K.; Zhang, C.; Hernandez, L.; Allocco, J.; Basilio, A.; Tormo, J. R.; Genilloud, O.; Vicente, F.; Pelaez, F.; Colwell, L.; Lee, S. H.; Michael, B.; Felcetto, T.; Gill, C.; Silver, L. L.; Hermes, J. D.; Bartizal, K.; Barrett, J.; Schmatz, D.; Becker, J. W.; Cully, D.; Singh, S. B. Nature 2006, 441, 358.

    42. [42]

      Zheng, Z.; Parsons, J. B.; Tangallapally, R.; Zhang, W.; Rock, C. O.; Lee, R. E. Bioorg. Med. Chem. Lett. 2014, 24, 2585.

    43. [43]

      Kallberg, Y.; Oppermann, U.; Jornvall, H.; Persson, B. Eur. J. Biochem. 2002, 269, 4409.

    44. [44]

      Hou, J.; Zheng, H.; Chruszcz, M.; Zimmerman, M. D.; Shumilin, I. A.; Osinski, T.; Demas, M.; Grimshaw, S.; Minor, W. J. Bacteriol. 2016, 198, 463.

    45. [45]

      Price, A. C.; Zhang, Y.-M.; Rock, C. O.; White, S. W. Biochemistry 2001, 40, 12772.

    46. [46]

      Silva, R. G.; Rosado, L. A.; Santos, D. S.; Basso, L. A. Arch. Biochem. Biophys. 2008, 471, 1.

    47. [47]

      Price, A. C.; Zhang, Y. M.; Rock, C. O.; White, S. W. Structure 2004, 12, 417.

    48. [48]

      Cohen-Gonsaud, M.; Ducasse-Cabanot, S.; Quemard, A.; Labesse, G. Proteins 2005, 60, 392.

    49. [49]

      Cukier, C. D.; Hope, A. G.; Elamin, A. A.; Moynie, L.; Schnell, R.; Schach, S.; Kneuper, H.; Singh, M.; Naismith, J. H.; Lindqvist, Y.; Gray, D. W.; Schneider, G. ACS Chem. Biol. 2013, 8, 2518.

    50. [50]

      Lai, C. Y.; Cronan, J. E. J. Bacteriol. 2004, 186, 1869.

    51. [51]

      Sohn, M.-J.; Zheng, C.-J.; Kim, W.-G. J. Antibiot. 2008, 61, 687.

    52. [52]

      Wickramasinghe, S. R.; Inglis, K. A.; Urch, J. E.; Muller, S.; van Aalten, D. M.; Fairlamb, A. H. Biochem. J. 2006, 393, 447.

    53. [53]

      Tasdemir, D.; Lack, G.; Brun, R.; Rüedi, P.; Scapozza, L.; Perozzo, R. J. Med. Chem. 2006, 49, 3345.

    54. [54]

      Zhang, F.; Luo, S. Y.; Ye, Y. B.; Zhao, W. H.; Sun, X. G.; Wang, Z. Q.; Li, R.; Sun, Y. H.; Tian, W. X.; Zhang, Y. X. Biotechnol. Appl. Biochem. 2008, 51, 73.

    55. [55]

      Zeng, D.; Zhao, J.; Chung, H. S.; Guan, Z.; Raetz, C. R.; Zhou, P. J. Biol. Chem. 2013, 288, 5475.

    56. [56]

      Swarnamukhi, P. L.; Sharma, S. K.; Bajaj, P.; Surolia, N.; Surolia, A.; Suguna, K. FEBS Lett. 2006, 580, 2653.

    57. [57]

      Zhang, L.; Xiao, J.; Xu, J.; Fu, T.; Cao, Z.; Zhu, L.; Chen, H. Z.; Shen, X.; Jiang, H.; Zhang, L. Cell Res. 2016, 26, 1330.

    58. [58]

      Shen, S.; Hang, X.; Zhuang, J.; Zhang, L.; Bi, H.; Zhang, L. Int. J. Biol. Macromol. 2019, 128, 5.

    59. [59]

      Dodge, G. J.; Patel, A.; Jaremko, K. L.; McCammon, J. A.; Smith, J. L.; Burkart, M. D. Proc. Natl. Acad. Sci. U. S. A. 2019, 116, 6775.

    60. [60]

      Moynie, L.; Leckie, S. M.; McMahon, S. A.; Duthie, F. G.; Koehnke, A.; Taylor, J. W.; Alphey, M. S.; Brenk, R.; Smith, A. D.; Naismith, J. H. J. Mol. Biol. 2013, 425, 365.

    61. [61]

      Heath, R. J.; Rock, C. O. J. Biol. Chem. 1996, 271, 27795.

    62. [62]

      Nguyen, C.; Haushalter, R. W.; Lee, D. J.; Markwick, P. R.; Bruegger, J.; Caldara-Festin, G.; Finzel, K.; Jackson, D. R.; Ishikawa, F.; O'Dowd, B.; McCammon, J. A.; Opella, S. J.; Tsai, S. C.; Burkart, M. D. Nature 2014, 505, 427.

    63. [63]

      Bi, H.; Zhu, L.; Jia, J.; Zeng, L.; Cronan, J. E. Cell Chem. Biol. 2016, 23, 1480.

    64. [64]

      Wang, H.; Cronan, J. E. J. Biol. Chem. 2004, 279, 34489.

    65. [65]

      Bi, H.; Wang, H.; Cronan, J. E. Chem. Biol. 2013, 20, 1157.

    66. [66]

      Marrakchi, H.; Choi, K. H.; Rock, C. O. J. Biol. Chem. 2002, 277, 44809.

    67. [67]

      Aguilar, P. S.; Cronan, J. E.; de Mendoza, D. J. Bacteriol. 1998, 180, 2194.

    68. [68]

      Sharma, S. K.; Kapoor, M.; Ramya, T. N.; Kumar, S.; Kumar, G.; Modak, R.; Sharma, S.; Surolia, N.; Surolia, A. J. Biol. Chem. 2003, 278, 45661.

    69. [69]

      Zhang, L.; Liu, W.; Hu, T.; Du, L.; Luo, C.; Chen, K.; Shen, X.; Jiang, H. J. Biol. Chem. 2008, 283, 5370.

    70. [70]

      He, L.; Zhang, L.; Liu, X.; Li, X.; Zheng, M.; Li, H.; Yu, K.; Chen, K.; Shen, X.; Jiang, H.; Liu, H. J. Med. Chem. 2009, 52, 2465.

    71. [71]

      Zhang, L.; Kong, Y.; Wu, D.; Zhang, H.; Wu, J.; Chen, J.; Ding, J.; Hu, L.; Jiang, H.; Shen, X. Protein Sci. 2008, 17, 1971.

    72. [72]

      Chen, J.; Zhang, L.; Zhang, Y.; Zhang, H.; Du, J.; Ding, J.; Guo, Y.; Jiang, H.; Shen, X. BMC Microbiol. 2009, 9, 91.

    73. [73]

      McGillick, B. E.; Kumaran, D.; Vieni, C.; Swaminathan, S. Biochemistry 2016, 55, 1091.

    74. [74]

      Leesong, M.; Henderson, B. S.; Gillig, J. R.; Schwab, J. M.; Smith, J. L. Structure 1996, 4, 253.

    75. [75]

      Moynie, L.; Hope, A. G.; Finzel, K.; Schmidberger, J.; Leckie, S. M.; Schneider, G.; Burkart, M. D.; Smith, A. D.; Gray, D. W.; Naismith, J. H. J. Mol. Biol. 2016, 428, 108.

    76. [76]

      Kim, H. T.; Kim, S.; Na, B. K.; Chung, J.; Hwang, E.; Hwang, K. Y. Biochem. Biophys. Res. Commun. 2017, 493, 28.

    77. [77]

      Rafi, S.; Novichenok, P.; Kolappan, S.; Stratton, C. F.; Rawat, R.; Kisker, C.; Simmerling, C.; Tonge, P. J. J. Biol. Chem. 2006, 281, 39285.

    78. [78]

      Kim, K. H.; Ha, B. H.; Kim, S. J.; Hong, S. K.; Hwang, K. Y.; Kim, E. E. J. Mol. Biol. 2011, 406, 403.

    79. [79]

      Neckles, C.; Pschibul, A.; Lai, C. T.; Hirschbeck, M.; Kuper, J.; Davoodi, S.; Zou, J.; Liu, N.; Pan, P.; Shah, S.; Daryaee, F.; Bommineni, G. R.; Lai, C.; Simmerling, C.; Kisker, C.; Tonge, P. J. Biochemistry 2016, 55, 2992.

    80. [80]

      Li, H.; Zhang, X.; Bi, L.; He, J.; Jiang, T. PLoS One 2011, 6, e26743.

    81. [81]

      Kim, S. H.; Khan, R.; Choi, K.; Lee, S. W.; Rhee, S. FEBS J. 2020, 281, 4710.

    82. [82]

      Saito, J.; Yamada, M.; Watanabe, T.; Iida, M.; Kitagawa, H.; Takahata, S.; Ozawa, T.; Takeuchi, Y.; Ohsawa, F. Protein Sci. 2008, 17, 691.

    83. [83]

      Qiu, X.; Abdel-Meguid, S. S.; Janson, C. A.; Court, R. I.; Smyth, M. G.; Payne, D. J. Protein Sci. 1999, 8, 2529.

    84. [84]

      Miller, W. H.; Seefeld, M. A.; Newlander, K. A.; Uzinskas, I. N.; Burgess, W. J.; Heerding, D. A.; Yuan, C. C. K.; Head, M. S.; Payne, D. J.; Rittenhouse, S. F.; Moore, T. D.; Pearson, S. C.; Berry, V.; DeWolf, W. E.; Keller, P. M.; Polizzi, B. J.; Qiu, X.; Janson, C. A.; Huffman, W. F. J. Med. Chem. 2002, 45, 3246.

    85. [85]

      Seefeld, M. A.; Miller, W. H.; Newlander, K. A.; Burgess, W. J.; DeWolf, W. E.; Elkins, P. A.; Head, M. S.; Jakas, D. R.; Janson, C. A.; Keller, P. M.; Manley, P. J.; Moore, T. D.; Payne, D. J.; Pearson, S.; Polizzi, B. J.; Qiu, X.; Rittenhouse, S. F.; Uzinskas, I. N.; Wallis, N. G.; Huffman, W. F. J. Med. Chem. 2003, 46, 1627.

    86. [86]

      Heerding, D. A.; Chan, G.; DeWolf, W. E.; Fosberry, A. P.; Janson, C. A.; Jaworski, D. D.; McManus, E.; Miller, W. H.; Moore, T. D.; Payne, D. J.; Qiu, X.; Rittenhouse, S. F.; Slater-Radosti, C.; Smith, W.; Takata, D. T.; Vaidya, K. S.; Yuan, C. C. K.; Huffman, W. F. Bioorg. Med. Chem. Lett. 2001, 11, 2061.

    87. [87]

      Seefeld, M. A.; Miller, W. H.; Newlander, K. A.; Burgess, W. J.; Payne, D. J.; Rittenhouse, S. F.; Moore, T. D.; DeWolf, W. E.; Keller, P. M.; Qiu, X.; Janson, C. A.; Vaidya, K.; Fosberry, A. P.; Smyth, M. G.; Jaworski, D. D.; Slater-Radosti, C.; Huffman, W. F. Bioorg. Med. Chem. Lett. 2001, 11, 2241.

    88. [88]

      Ramnauth, J.; Surman, M. D.; Sampson, P. B.; Forrest, B.; Wilson, J.; Freeman, E.; Manning, D. D.; Martin, F.; Toro, A.; Domagala, M.; Awrey, D. E.; Bardouniotis, E.; Kaplan, N.; Berman, J.; Pauls, H. W. Bioorg. Med. Chem. Lett. 2009, 19, 5359.

    89. [89]

      Sampson, P. B.; Picard, C.; Handerson, S.; McGrath, T. E.; Domagala, M.; Leeson, A.; Romanov, V.; Awrey, D. E.; Thambipillai, D.; Bardouniotis, E.; Kaplan, N.; Berman, J. M.; Pauls, H. W. Bioorg. Med. Chem. Lett. 2009, 19, 5355.

    90. [90]

      Fage, C. D.; Lathouwers, T.; Vanmeert, M.; Gao, L. J.; Vrancken, K.; Lammens, E. M.; Weir, A. N. M.; Degroote, R.; Cuppens, H.; Kosol, S.; Simpson, T. J.; Crump, M. P.; Willis, C. L.; Herdewijn, P.; Lescrinier, E.; Lavigne, R.; Anne, J.; Masschelein, J. Angew. Chem. Int. Ed. 2020, 59, 10549.

    91. [91]

      Karlowsky, J. A.; Laing, N. M.; Baudry, T.; Kaplan, N.; Vaughan, D.; Hoban, D. J.; Zhanel, G. G. Antimicrob. Agents Chemother. 2007, 51, 1580.

    92. [92]

      Hafkin, B.; Kaplan, N.; Murphy, B. Antimicrob. Agents Chemother. 2015, 60, 1695.

    93. [93]

      Parker, E. N.; Drown, B. S.; Geddes, E. J.; Lee, H. Y.; Ismail, N.; Lau, G. W.; Hergenrother, P. J. Nat. Microbiol. 2020, 5, 67.

    94. [94]

      Ozawa, T.; Kitagawa, H.; Yamamoto, Y.; Takahata, S.; Iida, M.; Osaki, Y.; Yamada, K. Bioorg. Med. Chem. Lett. 2007, 15, 7325.

    95. [95]

      Jones, J. A.; Prior, A. M.; Marreddy, R. K. R.; Wahrmund, R. D.; Hurdle, J. G.; Sun, D.; Hevener, K. E. ACS Chem. Biol. 2019, 14, 1528.

    96. [96]

      Yu, Y. H.; Ma, J. R.; Wang, H. H. J. Microbiol. 2016, 4, 76 (in Chinese).

  • 加载中
    1. [1]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    2. [2]

      Yihui Song Shangshang Qin Kai Wu Chengyun Jin Bin Yu . 生物化学在高水平创新型药学人才培养中的交叉融合应用——以去甲基化酶LSD1抑制剂的活性评价为例. University Chemistry, 2025, 40(6): 341-352. doi: 10.12461/PKU.DXHX202406018

    3. [3]

      Xuejie WangGuoqing CuiCongkai WangYang YangGuiyuan JiangChunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044

    4. [4]

      Linfeng XiaoWanlu RenShishi ShenMengshan ChenRunhua LiaoYingtang ZhouXibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036

    5. [5]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    6. [6]

      Kexin DongChuqi ShenRuyu YanYanping LiuChunqiang ZhuangShijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-0. doi: 10.3866/PKU.WHXB202310013

    7. [7]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    8. [8]

      Yikai WangXiaolin JiangHaoming SongNan WeiYifan WangXinjun XuCuihong LiHao LuYahui LiuZhishan Bo . Thickness-Insensitive, Cyano-Modified Perylene Diimide Derivative as a Cathode Interlayer Material for High-Efficiency Organic Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-0. doi: 10.3866/PKU.WHXB202406007

    9. [9]

      Lirui Shen Kun Liu Ying Yang Dongwan Li Wengui Chang . Synthesis and Application of Decanedioic Acid-N-Hydroxysuccinimide Ester: Exploration of Teaching Reform in Comprehensive Applied Chemistry Experiment. University Chemistry, 2024, 39(8): 212-220. doi: 10.3866/PKU.DXHX202312035

    10. [10]

      Jiatong Hu Qiyi Wang Ruiwen Tang Jiajing Feng . Photocatalytic Journey of Perylene Diimides in a Competitive Arena. University Chemistry, 2025, 40(5): 328-333. doi: 10.12461/PKU.DXHX202407015

    11. [11]

      Mengyang LIHao XUZhonghao NIUChunhua GONGWeihui ZHONGJingli XIE . Highly effective catalytic synthesis of β-amino alcohols by using viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1294-1300. doi: 10.11862/CJIC.20250080

    12. [12]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    13. [13]

      Qing LiGuangxun ZhangYuxia XuYangyang SunHuan Pang . P-Regulated Hierarchical Structure Ni2P Assemblies toward Efficient Electrochemical Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(9): 2308045-0. doi: 10.3866/PKU.WHXB202308045

    14. [14]

      Hailian TangSiyuan ChenQiaoyun LiuGuoyi BaiBotao QiaoLiu Fei . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 2408004-0. doi: 10.3866/PKU.WHXB202408004

    15. [15]

      Xiaoxuan Yu Wukun Liu . Practice of Ideological and Political Education in Medicinal Chemistry for Pharmacy Administration Major: A Case Study on the Discovery of Cisplatin’s Anticancer Function. University Chemistry, 2025, 40(4): 408-414. doi: 10.12461/PKU.DXHX202405200

    16. [16]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    17. [17]

      Ke LiChuang LiuJingping LiGuohong WangKai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009

    18. [18]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    19. [19]

      Weikang WangYadong WuJianjun ZhangKai MengJinhe LiLele WangQinqin Liu . Green H2O2 synthesis via melamine-foam supported S-scheme Cd0.5Zn0.5In2S4/S-doped carbon nitride heterojunction: synergistic interfacial charge transfer and local photothermal effect. Acta Physico-Chimica Sinica, 2025, 41(8): 100093-0. doi: 10.1016/j.actphy.2025.100093

    20. [20]

      Jiaxuan ZuoKun ZhangJing WangXifei Li . Nucleation Regulation and Mechanism of Precursors for Nickel Cobalt Manganese-based Cathode Materials in Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100009-0. doi: 10.3866/PKU.WHXB202404042

Metrics
  • PDF Downloads(193)
  • Abstract views(9649)
  • HTML views(2424)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return