Citation: Yu Mohan, Cheng Yuanyuan, Liu Yajun. Mechanistic Study of Oxygenation Reaction in Firefly Bioluminescence[J]. Acta Chimica Sinica, ;2020, 78(9): 989-993. doi: 10.6023/A20060269 shu

Mechanistic Study of Oxygenation Reaction in Firefly Bioluminescence

  • Corresponding author: Liu Yajun, yajun.liu@bnu.edu.cn
  • Received Date: 25 June 2020
    Available Online: 15 July 2020

    Fund Project: Project supported by the National Natural Science Foundation of China (Nos. 21673020, 21973005, 21421003)the National Natural Science Foundation of China 21973005the National Natural Science Foundation of China 21421003the National Natural Science Foundation of China 21673020

Figures(4)

  • As the most common bioluminescence (BL), firefly BL, is of great significance in the fields of biotechnology, biomedicine and so on. The entire BL process involves a series of complicate in vivo chemical reactions. The BL is initiated by the enzymatic oxidation of luciferin. This is a spin-forbidden reaction of low efficiency, because that luciferin is in singlet state and O2 is in triplet state. However, firefly is till-now the most efficient system of converting chemical energy to light energy. Why this spin-forbidden reaction occurs efficiently? A single electron transfer (SET) mechanism has been confirmed on this reaction by experiments. However, there is lack of a complete and detailed description of the mechanism and reaction process. Via a calculation of density functional theory (DFT), this article described the complete process of this reaction. The oxygenation of luciferin is initiated by a SET from singlet L3- to triplet O2 to form RC 3[L·2-…O2·-]. Then the reaction is carried out on the potential energy surface (PES) of triplet state (T1), on which O2·- performs a nucleophilic attack on C4 of L·2-. There is an intersystem crossing between the ground (S0) and T1 PESs nearby the first transition state (TS1). After the ISC (intersystem crossing), the reaction continuously undergoes on the S0 PES to produce dioxetanone FDO- via two TSs and two intermediates (Ints). The analysis on electron densities and natural orbitals indicates that there is a quick reaction of biradical annihilation around the ISC. About 11.9 kcal·mol-1 energy is needed to reach the ISC before the whole reaction occurs on the S0 PES. The highest barrier of the reactions on the S0 PES is only 4.2 kcal·mol-1. The biradical annihilation around the ISC and the very low energy barriers explain the reason of the spin-forbidden reaction with high efficiency. This study is helpful for understanding the initiation of firefly BL and the other oxygen-dependent BL.
  • 加载中
    1. [1]

      Chen, F.; Liu, S.; Duan, X. Acta Chim. Sinica 2013, 71, 1035(in Chinese).
       

    2. [2]

      Wilson, T.; Hastings, J. W. Annu. Rev. Cell. Dev. Bi. 1998, 14, 197.  doi: 10.1146/annurev.cellbio.14.1.197

    3. [3]

      Haddock, S. H. D.; Moline, M. A.; Case, J. F. Annu. Rev. Mar. Sci. 2010, 2, 443.  doi: 10.1146/annurev-marine-120308-081028

    4. [4]

      Lee, J. Bioluminescence, the Nature of the Light, University of Georgia, 2020, pp. 102~114.
       

    5. [5]

      Ando, Y.; Niwa, K.; Yamada, N.; Enomot, T.; Irie, T.; Kubota, H.; Ohmiya, Y.; Akiyama, H. Nat. Photonics 2008, 2, 44.  doi: 10.1038/nphoton.2007.251

    6. [6]

      Wood, K. V. Photochem. Photobiol. 1995, 62, 662.  doi: 10.1111/j.1751-1097.1995.tb08714.x

    7. [7]

      Ugarova, N. N.; Brovko, L. Y. Luminescence 2002, 17, 321.  doi: 10.1002/bio.688

    8. [8]

      Schmidt, S. P.; Schuster, G. B. J. Am. Chem. Soc. 1978, 100, 1966.  doi: 10.1021/ja00474a074

    9. [9]

      Day, J. C.; Tisi, L. C.; Bailey, M. J. Luminescence 2004, 19, 8.  doi: 10.1002/bio.749

    10. [10]

      Navizet, I.; Liu, Y.-J.; Ferre, N.; Xiao, H.-Y.; Fang, W.-H.; Lindh, R. J. Am. Chem. Soc. 2010, 132, 706.  doi: 10.1021/ja908051h

    11. [11]

      Orlova, G.; Goddard, J. D.; Brovko, L. Y. J. Am. Chem. Soc. 2003, 125, 6962.  doi: 10.1021/ja021255a

    12. [12]

      Wilsey, S.; Bernardi, F.; Olivucci, M.; Robb, M. A.; Murphy, S.; Adam, W. J. Phys. Chem. A 1999, 103, 1669.  doi: 10.1021/jp9848086

    13. [13]

      Min, C.; Li, Z.; Cui, X.; Yang, X.; Huang, S.; Wang, S.; Ren, A. Chin. J. Org. Chem. 2015, 35, 432(in Chinese).
       

    14. [14]

      Yue, L.; Liu, Y.-J.; Fang, W.-H. J. Am. Chem. Soc. 2012, 134, 11632.  doi: 10.1021/ja302979t

    15. [15]

      Yue, L.; Lan, Z.; Liu, Y.-J. J. Phys. Chem. Lett. 2015, 6, 540.  doi: 10.1021/jz502305g

    16. [16]

      Cheng, Y.-Y.; Liu, Y.-J. ChemPhysChem 2019, 20, 1720.
       

    17. [17]

      Branching, B. R.; Rosenberg, J. C.; Fontaine, D. M.; Southworth, T. L.; Behney, C. E.; Uzasci, L. J. Am. Chem. Soc. 2011, 133, 11088.  doi: 10.1021/ja2041496

    18. [18]

      Marahiel, M. A.; Stachelhaus, T.; Mootz, H. D. Chem. Rev. 1997, 97, 2651.  doi: 10.1021/cr960029e

    19. [19]

      Westheimer, F. H. Science 1987, 235, 1173.  doi: 10.1126/science.2434996

    20. [20]

      Barrozo, A.; Blaha-Nelson, D.; Williams, N. H.; Kamerlin, S. C. L. Pure Appl. Chem. 2017, 89, 715.  doi: 10.1515/pac-2016-1125

    21. [21]

      Duarte, F.; qvist, J.; Williams, N. H.; Kamerlin, S. C. L. J. Am. Chem. Soc. 2015, 137, 1081.  doi: 10.1021/ja5082712

    22. [22]

      Duarte, F.; Barrozo, A.; qvist, J.; Williams, N. H.; Kamerlin, S. C. L. J. Am. Chem. Soc. 2016, 138, 10664.  doi: 10.1021/jacs.6b06277

    23. [23]

      Nelson, D. L.; Cox, M. M. Lehninger Principles of Biochemistry, 7th ed., W. H. Freeman and Company, New York, 2013, pp. 1370~1380.
       

    24. [24]

      Koo, J.-Y.; Schuster, G. B. J. Am. Chem. Soc. 1977, 99, 6107.  doi: 10.1021/ja00460a050

    25. [25]

      Branchini, B. R.; Behney, C. E.; Southworth, T. L.; Fontaine, D. M.; Gulick, A. M.; Vinyard, D. J.; Brudvig, G. W. J. Am. Chem. Soc. 2015, 137, 7592.  doi: 10.1021/jacs.5b03820

    26. [26]

      Berraud-Pache, R.; Lindh, R.; Navizet, I. J. Phys. Chem. B 2018, 122, 5173.  doi: 10.1021/acs.jpcb.8b00642

    27. [27]

      Hirano, T.; Hasumi, Y.; Ohtsuka, K.; Maki, S.; Niwa, H.; Yamaji, M.; Hashizume, D. J. Am. Chem. Soc. 2009, 131, 2385.  doi: 10.1021/ja808836b

    28. [28]

      Shimomura, O. In Bioluminescence:Chemical Principles and Methods, World Scientific Publishing Co. Pte. Ltd., Singapore, 2006.
       

    29. [29]

      Ding, B. W.; Liu, Y. J. J. Am. Chem. Soc. 2017, 139, 1106.  doi: 10.1021/jacs.6b09119

    30. [30]

      Luo, Y.; Liu, Y.-J. J. Phys. Chem. A 2019, 123, 4354.  doi: 10.1021/acs.jpca.9b02084

    31. [31]

      Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2007, 120, 215.
       

    32. [32]

      Perdew, J. P.; Ruzsinszky, A.; Tao, J. M.; Staroverov, V. N.; Scuseria, G. E.; Csonka, G. I. J. Chem. Phys. 2005, 123, A1133.
       

    33. [33]

      Dreuw, A.; Head-Gordon, M. Chem. Rev. 2005, 105, 4009.  doi: 10.1021/cr0505627

    34. [34]

      Boggio-Pasqua, M.; Heully, J.-L. Theor. Chem. Acc. 2015, 135, 9.
       

    35. [35]

      Ess, D. H.; Cook, T. C. J. Phys. Chem. A 2012, 116, 4922.  doi: 10.1021/jp300633j

    36. [36]

      Gilson, M. K.; Honig, B. H. Biopolymers 1986, 25, 2097.  doi: 10.1002/bip.360251106

    37. [37]

      Pitera, J. W.; Falta, M.; van Gunsteren, W. F. Biophys. J. 2001, 80, 2546.  doi: 10.1016/S0006-3495(01)76226-1

    38. [38]

      Cossi, M.; Rega, N.; Scalmani, G.; Barone, V. J. Comput. Chem. 2003, 24, 669.  doi: 10.1002/jcc.10189

    39. [39]

      Nakatani, N.; Hasegawa, J.-y.; Nakatsuji, H. J. Am. Chem. Soc. 2007, 129, 8756.  doi: 10.1021/ja0611691

    40. [40]

      Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision D. Gaussian Inc., Wallingford, 2009.
       

  • 加载中
    1. [1]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    2. [2]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    3. [3]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    4. [4]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    5. [5]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    6. [6]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    7. [7]

      Shiyi WANGChaolong CHENXiangjian KONGLansun ZHENGLasheng LONG . Polynuclear lanthanide compound [Ce4Ce6(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 88-96. doi: 10.11862/CJIC.20240342

    8. [8]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    9. [9]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    10. [10]

      Yi Yang Xin Zhou Miaoli Gu Bei Cheng Zhen Wu Jianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064

    11. [11]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    12. [12]

      Zhengkun QINZicong PANHui TIANWanyi ZHANGMingxing SONG . A series of iridium(Ⅲ) complexes with fluorophenyl isoquinoline ligand and low-efficiency roll-off properties: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1235-1244. doi: 10.11862/CJIC.20240429

    13. [13]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    14. [14]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    15. [15]

      Dongdong Yao JunweiGu Yi Yan Junliang Zhang Yaping Zheng . Teaching Phase Separation Mechanism in Polymer Blends Using Process Representation Teaching Method: A Teaching Design for Challenging Theoretical Concepts in “Polymer Structure and Properties” Course. University Chemistry, 2025, 40(4): 131-137. doi: 10.12461/PKU.DXHX202408125

    16. [16]

      Lisha LEIWei YONGYiting CHENGYibo WANGWenchao HUANGJunhuan ZHAOZhongjie ZHAIYangbin DING . Application of regenerated cellulose and reduced graphene oxide film in synergistic power generation from moisture electricity generation and Mg-air batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1151-1161. doi: 10.11862/CJIC.20240202

    17. [17]

      Jingwen Wang Minghao Wu Xing Zuo Yaofeng Yuan Yahao Wang Xiaoshun Zhou Jianfeng Yan . Advances in the Application of Electrochemical Regulation in Investigating the Electron Transport Properties of Single-Molecule Junctions. University Chemistry, 2025, 40(3): 291-301. doi: 10.12461/PKU.DXHX202406023

    18. [18]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    19. [19]

      Rong Tian Yadi Yang Naihao Lu . Comprehensive Experimental Design of Undergraduate Students Based on Interdisciplinarity: Study on the Effect of Quercetin on Chlorination Activity of Myeloperoxidase. University Chemistry, 2024, 39(8): 247-254. doi: 10.3866/PKU.DXHX202312064

    20. [20]

      Yuchen Zhou Huanmin Liu Hongxing Li Xinyu Song Yonghua Tang Peng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067

Metrics
  • PDF Downloads(29)
  • Abstract views(4315)
  • HTML views(731)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return