Citation: Du Chongyang, Chen Yaofeng. ZnEt2 Promoted Hydrosilylation of CO2 and Formylation or Urealation of Amines with CO2 as a C1 Building Block[J]. Acta Chimica Sinica, ;2020, 78(9): 938-944. doi: 10.6023/A20060268 shu

ZnEt2 Promoted Hydrosilylation of CO2 and Formylation or Urealation of Amines with CO2 as a C1 Building Block

  • Corresponding author: Chen Yaofeng, yaofchen@mail.sioc.ac.cn
  • Received Date: 24 June 2020
    Available Online: 7 August 2020

    Fund Project: Project supported by the National Natural Science Foundation of China (No. 21821002) and the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB20000000)the National Natural Science Foundation of China 21821002the Strategic Priority Research Program of the Chinese Academy of Sciences XDB20000000

Figures(1)

  • Fixation and transformation of CO2 are of the great importance, especially the conversion of CO2 into valuable organic compounds catalyzed by the cheap and biocompatible metal catalysts. Zinc is an abundant, biocompatible and environmentally friendly element. ZnEt2 is commercial available, and has been widely used as reducing or transmetalation agent in hydrocarboxylation of unsaturated hydrocarbons with CO2. In these reactions, ZnEt2 is generally used in stoichiometric amount or excess amout. This manuscript reports the hydrosilylation of CO2 into methoxysilane promoted by a catalytic amount of ZnEt2 (1.0 mol%), the ZnEt2 promoted formylation or urealation of amines with CO2 as a one-carbon (C1) building block is also described. The hydrosilylation of CO2 into methoxysilane (CH3OSi(OEt)3) with (EtO)3SiH as a hydrosilylation reagent is affected by CO2 pressure, ZnEt2 amount, reaction temperature and reaction time. Under the reaction conditions of 1.0 MPa CO2 (the initial CO2 pressure) and 1.0 mol% ZnEt2, the yield of methoxysilane is up to ca. 90% after 7 h at 90℃, and no solvent is used for this reaction. In the presence of organic amine, the reaction gives formamide or urea instead of methoxysilane. Under 1.5 MPa CO2, 1.0 mol% ZnEt2, 2.4 equiv. (EtO)3SiH and 100℃, a series of secondary amines, both the aromatic ones and the aliphatic ones, can be formylated into formamides. In the formylation of N-methylanilines with different substituents at para-position, the isolated yields of the formylation products are in the order of OMe≈Me>H>F>Cl≈Br>CF3>NO2, indicating the electron-donating group at the para-position of the N-methylanilines is benefit for the formylation reaction. When primary amines are used as the substrates, the reactions prefer to produce urea derivatives under the same reaction conditions. In the urealation reaction, the electronic effect is not as significant as that in the formylation reaction.
  • 加载中
    1. [1]

    2. [2]

      Fernández-Alvarez, F. J.; Aitani, A. M.; Oro, L. Catal. Sci. Technol. 2014, 4, 611.  doi: 10.1039/C3CY00948C

    3. [3]

      (a) Koinuma, H.; Kawakami, F.; Kato, H.; Hirai, H. J. Chem. Soc., Chem. Commun. 1981, 213.(b) Süss-Fink, G.; Reiner, J. Organomet. Chem. 1981, 221, C36.(c) Jansen, A.; Grls, H.; Pitter, S. Organometallics 2000, 19, 135.(d) Jansen, A.; Pitter, S. J. Mol. Catal. A:Chem. 2004, 217, 41.(e) Deglmann, P.; Ember, E.; Hofmann, P.; Pitter, S.; Walter, O. Chem.-Eur. J. 2007, 13, 2864.(f) Metsnen, T. T.; Oestreich, M. Organometallics 2015, 34, 543.

    4. [4]

      (a) Eisenschmid, T. C.; Eisenberg, R. Organometallics 1989, 8, 1822.(b) Park, S.; Bézier, D.; Brookhart, M. J. Am. Chem. Soc. 2012, 134, 11404.(c) Lalrempuia, R.; Iglesias, M.; Polo, V.; Sanz Miguel, P. J.; Fernández-Alvarez, F. J.; Pérez-Torrente, J. J.; Oro, L. A. Angew. Chem., Int. Ed. 2012, 51, 12824.

    5. [5]

      (a) Huckaba, A. J.; Hollis, T. K.; Reilly, S. W. Organometallics 2013, 32, 6248.(b) Itagaki, S.; Yamaguchi, K.;Mizuno, N. J. Mol. Catal. A:Chem. 2013, 366, 347.

    6. [6]

      Scheuermann, M. L.; Semproni, S. P.; Pappas, I.; Chirik, P. J. Inorg. Chem. 2014, 53, 9463.  doi: 10.1021/ic501901n

    7. [7]

      (a) González-Sebastiaán, L.; Flores-Alamo, M.; García, J. J. Organometallics 2013, 32, 7186.(b) Ríos, P.; Curado, N.; López-Serrano, J.; Rodríguez, A. Chem. Commun. 2016, 52, 2114.(c) Singh, V.; Sakaki, S.; Deshmukh, M. M. Organometallics 2018, 37, 1258.

    8. [8]

      (a) Motokura, K.; Kashiwame, D.; Miyaji, A.; Baba, T. Org. Lett. 2012, 14, 2642.(b) Motokura, K.; Kashiwame, D.; Takahashi, N.; Miyaji, A.; Baba, T. Chem.-Eur. J. 2013, 19, 10030.(c) Zhang, L.; Cheng, J.; Hou, Z. Chem. Commun. 2013, 49, 4782.(d) Gui, Y. Y.; Hu, N. F.; Chen, X. W.; Liao, L. L.; Ju, T.; Ye, J. H.; Zhang, Z.; Li, J.; Yu, D. G. J. Am. Chem. Soc. 2017, 139, 17011.

    9. [9]

      (a) Mitton, S. J.; Turculet, L. Chem.-Eur. J. 2012, 18, 15258.(b) Takaya, J.; Iwasawa, N. J. Am. Chem. Soc. 2017, 139, 6074.

    10. [10]

      LeBlanc, F. A.; Piers, W. E.; Parvez, M. Angew. Chem., Int. Ed. 2014, 53, 789.  doi: 10.1002/anie.201309094

    11. [11]

      Matsuo, T.; Kawaguchi, H. J. Am. Chem. Soc. 2006, 128, 12362.  doi: 10.1021/ja0647250

    12. [12]

      Bertini, F.; Glatz, M.; Stöger, B.; Peruzzini, M.; Veiros, L. F.; Kirchner, K.; Gonsalvi, L. ACS Catal. 2019, 9, 632.  doi: 10.1021/acscatal.8b04106

    13. [13]

      (a) Rauch, M.; Parkin, G. J. Am. Chem. Soc. 2017, 139, 18162.(b) Rauch, M.; Strater, Z.; Parkin, G. J. Am. Chem. Soc. 2019, 141, 17754.

    14. [14]

      (a) Riduan, S. N.; Zhang, Y.; Ying, J. Y. Angew. Chem., Int. Ed. 2009, 48, 3322.(b) Wehmschulte, R. J.; Saleh, M.; Powell, D. R. Organometallics 2013, 32, 6812.(c) Courtemanche, M. A.; Légaré, M. A.; Rochette, É.; Fontaine, F. G. Chem. Commun. 2015, 51, 6858.(d) Chen, J.; Falivene, L.; Caporaso, L.; Cavallo, L.; Chen, E. Y. X. J. Am. Chem. Soc. 2016, 138, 5321.

    15. [15]

      (a) Berkefeld, A.; Piers, W. E.; Parvez, M. J. Am. Chem. Soc. 2010, 132, 10660.(b) Jiang, Y.; Blacque, O.; Fox, T.; Berke, H. J. Am. Chem. Soc. 2013, 135, 7751.

    16. [16]

      (a) Weissermel, K.; Arpe, H. J. Industrial Organic Chemistry, 3rd ed., Wiley-VCH, Weinheim, Germany, 1997(translated by Lindley, C. R.).(b) Peter, G. M. Wuts. Greene's Protective Groups in Organic Synthesis, 5th ed., Wiley-VCH, Weinheim, 2014.

    17. [17]

      (a) Motokura, K.; Takahashi, N.; Kashiwame, D.; Yamaguchi, S.; Miyaji, A.; Baba, T. Catal. Sci. Technol. 2013, 3, 2392.(b) Santoro, O.; Lazreg, F.; Minenkov, Y.; Cavallo, L.; Cazin, C. S. J. Dalton Trans. 2015, 44, 18138.(c) Zhang, S.; Mei, Q. Q.; Liu, H. Y.; Liu, H. Z.; Zhang, Z. P.; Han, B. X. RSC Adv., 2016, 6, 32370.(d) Li, R. P.; Zhao, Y. F.; Li, Z. Y.; Wu, Y. Y.; Wang, J. J.; Liu, Z. M. Sci China Chem. 2019, 62, 256.

    18. [18]

      (a) Molla, R. A.; Bhanja, P.; Ghosh, K.; Islam, S. S.; Bhaumik, A.; Islam, S. M. ChemCatChem 2017, 9, 1939.(b) Cui, X. J.; Zhang, Y.; Deng, Y. Q,; Shi, F. Chem. Commun. 2014, 50, 13521.(c) Luo, X. Y.; Zhang, H. Y.; Ke, Z. G.; Wu, C. L.; Guo, S. E.; Wu, Y. Y.; Yu, B.; Liu, Z. M. Sci. China Chem. 2018, 61, 725.

    19. [19]

      (a) Kröcher, O.; Köppel, R. A.; Baiker, A. Chem. Commun. 1997, 453.(b) Jessop, P. G.; Hsiao, Y.; Ikariya, T.; Noyori, R. J. Am. Chem. Soc. 1994, 116, 8851.(c) Jessop, P. G.; Hsiao, Y.; Ikariya, T.; Noyori, R. J. Am. Chem. Soc. 1996, 118, 344.(d) Schmid, L.; Canonica, A.; Baiker, A. Appl. Catal. A 2003, 255, 23.(e) Munshi, P.; Heldebrant, D. J.; McKoon, E. P.; Kelly, P. A.; Tai, C. C.; Jessop, P. G. Tetrahedron Lett. 2003, 44, 2725.(f) Zhang, L.; Han, Z.; Zhao, X.; Wang, Z.; Ding, K. L. Angew. Chem. Int. Ed. 2015, 54, 6186.(g) Zhang, F. H.; Liu, C.; Li, W.; Tian, G. L.; Xie, J. H.; Zhou, Q. L. Chin. J. Chem. 2018, 36, 1000.

    20. [20]

      (a) Federsel, C.; Boddien, A.; Jackstell, R.; Jennerjahn, R.; Dyson, P. J.; Scopelliti, R.; Laurenczy, G.; Beller, M. Angew. Chem. Int. Ed. 2010, 49, 9777.(b) Frogneux, X.; Jacquet O.; Cantat, T. Catal. Sci. Technol. 2014, 4, 1529.(c) Jayarathne, U.; Hazariand, N.; Bernskoetter, W. H. ACS Catal. 2018, 8, 1338.

    21. [21]

      (a) Daw, P.; Chakraborty, S.; Leitus, G.; Diskin-Posner, Y.; BenDavid, Y.; Milstein, D. ACS Catal. 2017, 7, 2500.(b) Ke, Z. G.; Yang, Z. Z.; Liu, Z. H.; Yu, B.; Zhao, Y. F.; Guo, S. E.; Wu, Y. Y.; Liu, Z. M. Org. Lett. 2018, 20, 6622.

    22. [22]

      (a) Itagaki, S.; Yamaguchi, K.; Mizuno, N. J. Mol. Catal. A:Chem. 2013, 366, 347.(b) Nguyen, T. V. Q.; Yoo, W. J.; Kobayashi, S. Angew. Chem. Int. Ed. 2015, 54, 9209.(c) Lam, R. H.; McQueen, C. M. A.; Pernik, I.; McBurney, R. T.; Hill, A. F.; Messerle, B. A. Green Chem. 2019, 21, 538.

    23. [23]

      González-Sebastián, L.; Flores-Alamo, M.; García, M. Organometallics 2015, 34, 763.  doi: 10.1021/om501176u

    24. [24]

      (a) Mitsudome, T.; Urayama, T.; Fujita, S.; Maeno, Z.; Mizugaki, T.; Jitsukawa, K.; Kaneda, K. ChemCatChem 2017, 9, 3632.(b) Tang, G.; Bao, H. L.; Jin, C.; Zhong, X. H.; Du, X. L. RSC Adv. 2015, 5, 99678.

    25. [25]

      (a) Fang, C.; Lu, C. L.; Liu, M. H.; Zhu, Y. L.; Fu, Y.; Lin, B. L. ACS Catal. 2016, 6, 7876.(b) Nale, D. B.; Bhanage, B. M. Synlett 2016, 27, 1413.

    26. [26]

      (a) Jacquet, O.; Das Neves Gomes, C.; Ephritikhine, M.; Cantat, T. J. Am. Chem. Soc. 2012, 134, 2934.(b) Das, S.; Bobbink, F. D.; Bulut, S.; Soudani, M.; Dyson, P. J. Chem. Commun. 2016, 52, 2497.(c) Hao, L. D.; Zhao, Y. F.; Yu, B.; Yang, Z. Z.; Zhang, H. Y.; Han, B. X.; Gao, X.; Liu, Z. M. ACS Catal. 2015, 5, 4989.(d) Zhao, W. F.; Chi, X. P.; Li, H.; He, J.; Long, J. X.; Xu, Y. F.; Yang, S. Green Chem. 2019, 21, 567.(e) Liu, X. F.; Li, X. Y.; Qiao, C.; Fu, H. C.; He, L. N. Angew. Chem, Int. Ed. 2017, 56, 7425.(f) Lv, H.; Xing, Q.; Yue, C. T.; Lei Z. Q.; Li, F. W. Chem. Commun. 2016, 52, 6545.(g) Zhao, T. X.; Zhai, G. W.; Liang, J.; Li, P.; Hu X. B.; Wu, Y. T. Chem. Commun. 2017, 53, 8046.(h) Gomes, C. D. N.; Jacquet, O.; Villiers, C.; Thuéry, P.; Ephritikhine, M.; Cantat, T. Angew. Chem. Int. Ed. 2012, 51, 187.(i) Liu, X. F.; Li, X. Y.; Qiao, C.; He, L. N. Synlett 2018, 29, 548.(j) Wang, M. Y.; Wang, N.; Liu, X. F.; Qiao, C.; He, L. N. Green Chem. 2018, 20, 1564.(k) Liu, X. F.; Ma, R.; Qiao, C.; Cao H.; He, L. N. Chem. Eur. J. 2016, 22, 16489.(l) Liu, X. F.; Li, X. Y.; Qiao, C.; Fu, H. C.; He, L. N. Angew. Chem. Int. Ed. 2017, 56, 7425.

    27. [27]

      Shi, F.; Zhang, Q. H.; Ma, Y. B.; He, Y.; Deng, Y. Q. J. Am. Chem. Soc. 2005, 127, 4182.  doi: 10.1021/ja042207o

    28. [28]

      (a) Shi, F.; Deng, Y. Q.; SiMa, T. L.; Peng, J. J.; Gu, Y. L.; Qiao, B. T. Angew. Chem. Int. Ed. 2003, 42, 3257.(b) Ion, A.; Parvulescu, V.; Jacobs, P.; Vos, D. D. Green Chem. 2007, 9, 158.

    29. [29]

      Tamura, M.; Ito, K.; Nakagawa, Y.; Tomishige, K. J. Catal. 2016, 343, 75.  doi: 10.1016/j.jcat.2015.11.015

    30. [30]

      Jurado-Vazquez, T.; García, J. J. Catal. Lett. 2018, 148, 1162.  doi: 10.1007/s10562-018-2305-8

    31. [31]

      Xu, M. T.; Jupp, A. R.; Stephan, D. W. Angew. Chem. Int. Ed. 2017, 56, 14277.  doi: 10.1002/anie.201708921

    32. [32]

      Ogura, H.; Takeda, K.; Tokue, R.; Kobayashi, T. Synthesis 1978, 394.
       

    33. [33]

      Cooper, C. F.; Falcone, S. J. Synth. Commun. 1995, 25, 2467.  doi: 10.1080/00397919508015452

    34. [34]

      Yamazaki, N.; Higashi, F.; Iguchi, T. Tetrahedron Lett. 1974, 13, 1191.
       

    35. [35]

      Enthaler, S.; Wu, X. F. Zinc Catalysis:Applications in Organic Synthesis, Wiley-VCH, Weinheim, 2015.
       

    36. [36]

      (a) Takimoto, M.; Mori, M. J. Am. Chem. Soc. 2002, 124, 10008.(b) Takimoto, M.; Nakamura, Y.; Kimura, K.; Mori, M. J. Am. Chem. Soc. 2004, 126, 5956.(c) Shimizu, K.; Sato, Y.; Mori, M.; Takimoto, M. Org. Lett. 2005, 7, 195.(d) Williams, C. M.; Johnson, J. B.; Rovis, T. J. Am. Chem. Soc. 2008, 130, 14936.(e) Li, S.; Yuan, W.; Ma, S. M. Angew. Chem., Int. Ed. 2011, 50, 2578.(f) Yuan, R.; Lin, Z. Organometallics 2014, 33, 7147.

    37. [37]

      (a) Cheng, M.; Lobkovsky, E. B.; Coates, G. W. J. Am. Chem. Soc. 1998, 120, 11018.(b) Cheng, M.; Moore, D. R.; Reczek, J. J.; Chamberlain, B. M.; Lobkovsky, E. B.; Coates, G. W. J. Am. Chem. Soc. 2001, 123, 8738.(c) Xiao, Y. L.; Wang, Z.; Ding, K. L. Chem. Eur. J. 2005, 11, 3668.(d) Reiter, M.; Vagin, S.; Kronast, A.; Jandl, C.; Rieger, B. Chem. Sci. 2017, 8, 1876.

    38. [38]

      (a) Sattler, W.; Parkin, G. J. Am. Chem. Soc. 2012, 134, 17462.(b) Khandelwal, M.; Wehmschulte, R. J. Angew. Chem., Int. Ed. 2012, 51, 7323.(c) Rit, A.; Zanardi, A.; Spaniol, T. P.; Maron, L.; Okuda, J. Angew. Chem., Int. Ed. 2014, 53, 13273.(d) Specklin, D.; Fliedel, C.; Gourlaouen, C.; Bruyere, J. C.; Avilés, T.; Boudon, C.; Ruhlmann, L.; Dagorne, S. Chem.-Eur. J. 2017, 23, 5509.(e) Specklin, D.; Hild, F.; Fliedel, C.; Gourlaouen, C.; Veiros, L. F.; Dagorne, S. Chem.-Eur. J. 2017, 23, 15908.(f) Tüchler, M.; Grtner, L.; Fischer, S.; Boese, A. D.; Belaj, F.; Msch-Zanetti, N. C. Angew. Chem. Int. Ed. 2018, 57, 6906.

    39. [39]

      Jacquet, O.; Frogneux, X.; Das Neves Gomes, C.; Cantat, T. Chem. Sci. 2013, 4, 2127.  doi: 10.1039/c3sc22240c

    40. [40]

      Luo, R. C.; Lin, X. W.; Chen, Y. J.; Zhang, W. Y.; Zhou, X. T.; Ji, H. B. ChemSusChem 2017, 10, 1224.  doi: 10.1002/cssc.201601490

    41. [41]

      Feng, G. Q.; Du, C. Y.; Xiang, L.; Rosal, I. D.; Li, G. Y.; Leng, X. B.; Chen, E. Y.-X.; Maron, L.; Chen, Y. F. ACS Catal. 2018, 8, 4710.  doi: 10.1021/acscatal.8b01033

    42. [42]

      Du, C. Y.; Chen, Y. F. Chin. J. Chem. 2020, 38, 1057.  doi: 10.1002/cjoc.202000072

    43. [43]

      George, H. W. US 2530367, 1950[Chem. Abstr. 1950, 66, 790230].
       

    44. [44]

      Dobrovetsky, R.; Stephan, D. W. Isr. J. Chem. 2015, 55, 206.  doi: 10.1002/ijch.201400121

    45. [45]

      Heyn, H. H. Advances in Inorganic Chemistry, Vol. 66, Eds.:Jacobs, I.; Carr, R. H., Elsevier, 2014, Chapter three, pp. 83~115.

  • 加载中
    1. [1]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    2. [2]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    3. [3]

      Xiaofei LiuHe WangLi TaoWeimin RenXiaobing LuWenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008

    4. [4]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    5. [5]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    6. [6]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    7. [7]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    8. [8]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    9. [9]

      Jianan HongChenyu XuYan LiuChangqi LiMenglin WangYanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099

    10. [10]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    11. [11]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    12. [12]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    13. [13]

      Meijin Li Xirong Fu Xue Zheng Yuhan Liu Bao Li . The Marvel of NAD+: Nicotinamide Adenine Dinucleotide. University Chemistry, 2024, 39(9): 35-39. doi: 10.12461/PKU.DXHX202401027

    14. [14]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    15. [15]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    16. [16]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    17. [17]

      Xinghai LiZhisen WuLijing ZhangShengyang Tao . Machine Learning Enables the Prediction of Amide Bond Synthesis Based on Small Datasets. Acta Physico-Chimica Sinica, 2025, 41(2): 2309041-0. doi: 10.3866/PKU.WHXB202309041

    18. [18]

      Shiyi WANGChaolong CHENXiangjian KONGLansun ZHENGLasheng LONG . Polynuclear lanthanide compound [Ce4Ce6(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 88-96. doi: 10.11862/CJIC.20240342

    19. [19]

      Haiyu ZhuZhuoqun WenWen XiongXingzhan WeiZhi Wang . 二维半金属/硅异质结中肖特基势垒高度的准确高效预测. Acta Physico-Chimica Sinica, 2025, 41(7): 100078-0. doi: 10.1016/j.actphy.2025.100078

    20. [20]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

Metrics
  • PDF Downloads(7)
  • Abstract views(3865)
  • HTML views(371)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return