Citation: Sun Jiulong, Cao Wanwan, Wang Ning, Gu Lin, Li Weihua. Progress of Boron Nitride Nanosheets Used for Heavy-duty Anti-Corrosive Coatings[J]. Acta Chimica Sinica, ;2020, 78(11): 1139-1149. doi: 10.6023/A20060267 shu

Progress of Boron Nitride Nanosheets Used for Heavy-duty Anti-Corrosive Coatings

  • Corresponding author: Gu Lin, gulin5@mail.sysu.edu.cn Li Weihua, liweihua3@mail.sysu.edu.cn
  • Received Date: 24 June 2020
    Available Online: 27 July 2020

    Fund Project: the Fundamental Research Funds for the Central Universities, Sun Yat-sen University 20lgzd17Project supported by the National Natural Science Foundation of China (No. 51973231), and the Fundamental Research Funds for the Central Universities, Sun Yat-sen University (No. 20lgzd17)the National Natural Science Foundation of China 51973231

Figures(13)

  • Boron nitride nanosheets (BNNSs), also known as "white graphene", is an important nanofiller with excellent mechanical properties, thermal conductivity, abrasion resistance, barrier properties, and hydrophobicity. It is also a new type of excellent performance insulation materials. It is widely used in heavy-duty anti-corrosion coatings, lubricants, sensors and other fields. Based on the huge application prospects of BNNSs in the field of metal corrosion protection, this article systematically summarizes the preparation and surface functionalization of BNNSs, boron nitride thin film protective coatings, BNNSs/organic protective coatings, BNNSs-inorganic materials/organic protective coatings, and focuses on the detailed analysis and existing problems of BNNSs uniformly dispersed in organic coatings and used for metal corrosion protection. The future development of BNNSs-based anticorrosive coatings is prospected.
  • 加载中
    1. [1]

      Barati, N.; Meletis, E. I. Mater. Today Commun. 2019, 19, 1.  doi: 10.1016/j.mtcomm.2018.12.001

    2. [2]

      Richards, C. A. J.; McMurray, H. N.; Williams, G. Corros. Sci. 2019, 154, 101.  doi: 10.1016/j.corsci.2019.04.005

    3. [3]

      Samiee, R.; Ramezanzadeh, B.; Mahdavian, M.; Alibakhshi, E. J. Clean Prod. 2019, 220, 340.  doi: 10.1016/j.jclepro.2019.02.149

    4. [4]

      Ding, R.; Chen, S.; Lv, J.; Gui, T.-J.; Wang, X, ; Zhao, X.-D.; Liu, J.; Li, B.-J.; Song, L.-Y.; Li, W.-H. Acta Chim. Sinica 2019, 77, 1140(in Chinese).
       

    5. [5]

      Wang, H.-X.; Yang, G.; Cheng, T.-S.; Wang, N.; Sun, R.; Wang, Z.-P. Acta Chim. Sinica 2019, 77, 316(in Chinese).
       

    6. [6]

      Sugino, T.; Kawasaki, A. S.; Tanioka, K.; Shirafuji, J. Appl. Phys. Lett. 1997, 71, 2704.  doi: 10.1063/1.120183

    7. [7]

      Cui, M. J.; Ren, S. M.; Chen, J.; Liu, S.; Zhang, G. G.; Zhao, H. C.; Wang, L. P.; Xue, Q. J. Appl. Surf. Sci. 2017, 397, 77.  doi: 10.1016/j.apsusc.2016.11.141

    8. [8]

      Zhao, H. R.; Ding, J. H.; Yu, H. B. New. J. Chem. 2018, 42, 14433.  doi: 10.1039/C8NJ03113D

    9. [9]

      Zhang, D. D.; Zhao, D. L.; Yao, R. R.; Xie, W. G. RSC Adv. 2015, 5, 28098.  doi: 10.1039/C5RA00312A

    10. [10]

      Weng, Q. H.; Wang, X. B.; Wang, X.; Bando, Y.; Golberg, D. Chem. Soc. Rev. 2016, 45, 3989.  doi: 10.1039/C5CS00869G

    11. [11]

      Cui, M. J.; Ren, S. M.; Qin, S.; Xue, Q. J.; Zhao, H. R.; Wang, L. P. RSC Adv. 2017, 7, 44043.  doi: 10.1039/C7RA06835B

    12. [12]

      Zhi, C. Y.; Bando, Y.; Tang, C. C.; Golberg, D. Mater. Sci. Eng. R-Rep. 2010, 70, 92.  doi: 10.1016/j.mser.2010.06.004

    13. [13]

      Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004, 306, 666.  doi: 10.1126/science.1102896

    14. [14]

      Rao, C. N. R.; Nag, A. J. Inorg. Chem. 2010, 27, 4244.

    15. [15]

      Yu, C. P.; Zhang, J.; Tian, W.; Fan, X. D.; Yao, Y. G. RSC Adv. 2018, 8, 21948.  doi: 10.1039/C8RA02685H

    16. [16]

      Wang, J. G.; Ma, F. C.; Liang, W. J.; Sun, M. T. Mater. Today Phys. 2017, 2, 6.  doi: 10.1016/j.mtphys.2017.07.001

    17. [17]

      Chen, X. J.; Dobson, J. F.; Raston, C. L. Chem. Commun. 2012, 48, 3703.  doi: 10.1039/c2cc17611d

    18. [18]

      Lei, W. W.; Mochalin, V. N.; Liu, D.; Qin, S.; Gogotsi, Y.; Chen, Y. Nat. Commun. 2015, 6, 8849.  doi: 10.1038/ncomms9849

    19. [19]

      Ding, J. H.; Zhao, H. R.; Yu, H. B. 2D Mater. 2018, 5, 045015.  doi: 10.1088/2053-1583/aad51a

    20. [20]

      Nicolosi, V.; Chhowalla, M.; Kanatzidis, M. G.; Strano, M. S.; Coleman, J. N. Science 2013, 304, 1420.

    21. [21]

      Zhi, C.; Bando, Y.; Tang, C.; Kuwahara, H.; Golberg, D. Adv. Mater. 2009, 21, 2889.  doi: 10.1002/adma.200900323

    22. [22]

      Cao, L.; Emami, S.; Lafdi, K. Mater. Express 2014, 4, 165.  doi: 10.1166/mex.2014.1155

    23. [23]

      Wang, Y.; Shi, Z. X.; Yin, J. J. Mater. Chem. 2011, 21, 11371.  doi: 10.1039/c1jm10342c

    24. [24]

      Zhou, K. G.; Mao, N. N.; Wang, H. X.; Peng, Y.; Zhang, H. L. Angew. Chem. Int. Ed. 2011, 50, 10839.  doi: 10.1002/anie.201105364

    25. [25]

      Wang, N.; Yang, G.; Wang, H. X.; Yan, C. Z.; Sun, R.; Wong, C. P. Mater. Today 2019, 27, 33.  doi: 10.1016/j.mattod.2018.10.039

    26. [26]

      Zhao, H. R.; Ding, J. H.; Shao, Z. Z.; Xu, B. Y.; Zhou, Q. B.; Yu, H. B. ACS Appl. Mater. Interfaces 2019, 11, 37247.  doi: 10.1021/acsami.9b11180

    27. [27]

      Yan, H. L.; Yu, P.; Han, G. C.; Zhang, Q. H.; Gu, L.; Yi, Y. P.; Liu, H. B.; Li, Y. L.; Mao, L. Q. Angew. Chem. Int. Ed. 2019, 58, 746.  doi: 10.1002/anie.201809730

    28. [28]

      Guler, O.; Guler, S, H. Optik 2016, 127, 4630.  doi: 10.1016/j.ijleo.2016.02.033

    29. [29]

      Zhou, X. S.; Wu, T. B.; Ding, K. L; Hu, B. J.; Hou, M. Q.; Han, B. X. Chem. Commun. 2010, 46, 386.  doi: 10.1039/B914763B

    30. [30]

      Gunasekaran, S. G.; Dharmendirakumar, M. High Perform. Polym. 2014, 26, 274.  doi: 10.1177/0954008313511349

    31. [31]

      Morishita, T.; Okamoto, H.; Katagiri, Y.; Matsushita, M.; Fukumori, K. Chem. Commun. 2015, 51, 12068.  doi: 10.1039/C5CC04077A

    32. [32]

      Ding, J. H.; Zhao, H. C.; Wang, Q. L.; Peng, W. J.; Yu, H. B. Nanotechnology 2017, 28, 475602.  doi: 10.1088/1361-6528/aa8e3d

    33. [33]

      Lee, Y. H.; Liu, K. K.; Lu, A. Y.; Wu, C. Y.; Lin, C. T.; Zhang, W. J.; Su, C. Y.; Hsu, C. L.; Lin, T. H. RSC Adv. 2012, 2, 111.  doi: 10.1039/C1RA00703C

    34. [34]

      Lu, G. Y.; Wu, T. R.; Yuan, Q. H.; Wang, H. S.; Wang, H. M.; Ding, F. F.; Xie, X. M.; Jiang, M. H. Nat. Commun. 2015, 6, 6160.  doi: 10.1038/ncomms7160

    35. [35]

      Song, L.; Ci, L. J.; Lu, H.; Sorokin, P. B.; Jin, C. H.; Ni, J.; Kvashnin, A. G.; Kvashnin, D. G.; Lou, J.; Yakobson, B. I.; Ajayan, P. M. Nano Lett. 2010, 10, 3209.  doi: 10.1021/nl1022139

    36. [36]

      Tay, R. Y.; Griep, M. H.; Mallick, G.; Tsang, S. H.; Singh, R. S.; Tumlin, T.; Teo, E. H. T.; Karna, S. P. Nano Lett. 2014, 14, 839.  doi: 10.1021/nl404207f

    37. [37]

      Pakdel, A.; Zhi, C. Y.; Bando, Y.; Nakayama, T.; Golberg, D. ACS Nano 2011, 5, 6507.  doi: 10.1021/nn201838w

    38. [38]

      Lin, Y.; Williams, T. V.; Xu, T. B.; Cao, W.; Elsayed-Ali, H. E.; Connell, J. W. J. Phys. Chem. C 2011, 115, 2679.

    39. [39]

      Yu, B.; Xing, W. Y.; Guo, W. W.; Qiu, S. L.; Wang, X.; Lo, S. M.; Hu, Y. J. Mater. Chem. A 2016, 4, 7330.  doi: 10.1039/C6TA01565D

    40. [40]

      Sainsbury, T.; Satti, A.; May, P.; Wang, Z. M.; McGovern, I.; Gunko, Y. K.; Coleman, J. J. Am. Chem. Soc. 2012, 134, 18758.  doi: 10.1021/ja3080665

    41. [41]

      Cai, W.; Hong, N. N.; Feng, X. M.; Zeng, W. R.; Shi, Y. Q.; Zhang, Y.; Wang, B. B.; Hu, Y. Chem. Eng. J. 2017, 330, 309.  doi: 10.1016/j.cej.2017.07.162

    42. [42]

      Wu, Y. Q.; He, Y.; Zhou, T. G.; Chen, C. L.; Zhong, F.; Xia, Y. Q.; Xie, P.; Zhang, C. Prog. Org. Coat. 2020, 142, 105541.  doi: 10.1016/j.porgcoat.2020.105541

    43. [43]

      Wu, Y. Q.; He, Y.; Chen, C. L.; Zhong, F.; Li, H. J.; Chen, J. Y.; Zhou, T. G. Colloid Surf. A-Physicochem. Eng. Asp. 2020, 587, 124337.  doi: 10.1016/j.colsurfa.2019.124337

    44. [44]

      Li, J.; Cui, J. C.; Yang, J. Y.; Ma, Y.; Qiu, H. X.; Yang, J. H. Prog. Org. Coat. 2016, 99, 443.  doi: 10.1016/j.porgcoat.2016.07.008

    45. [45]

      Pourhashem, S.; Vaezi, M. R.; Rashidi, A.; Bagherzadeh, M. R. Prog. Org. Coat. 2017, 111, 47.  doi: 10.1016/j.porgcoat.2017.05.008

    46. [46]

      Raza, M. A.; Rehman, Z. U.; Ghauri, F. A. Thin Solid Films 2018, 663, 93.  doi: 10.1016/j.tsf.2018.07.046

    47. [47]

      Fan, Y. Z.; Yang, H. Z.; Fan, H. S.; Liu, Q.; Lv, C.; Zhao, X.; Yang, M. X.; Wu, J. J.; Cao, X. M. Materials 2020, 13, 2340.  doi: 10.3390/ma13102340

    48. [48]

      Liu, Z.; Li, J. H.; Liu, X. H. ACS Appl. Mater. Interfaces 2020, 12, 6503.  doi: 10.1021/acsami.9b21467

    49. [49]

      Gu, L.; Ding, J.-H.; Yu, H.-B. Prog. Chem. 2016, 28, 737(in Chinese).

    50. [50]

      Cui, G.; Bi, Z. X.; Zhang, R. Y.; Liu, J. G.; Yu, X.; Li, Z. L. Chem. Eng. J. 2019, 373, 104.  doi: 10.1016/j.cej.2019.05.034

    51. [51]

      Gyawali, G.; Adhikari, R.; Kim, H. S.; Cho, H. B.; Lee, S. W. ECS Electrochem. Lett. 2013, 2, C7.

    52. [52]

      Britun, V. F.; Kurdyumov, A. V.; Petrusha, I. A. Mater. Lett. 1999, 41, 83.  doi: 10.1016/S0167-577X(99)00108-1

    53. [53]

      Liu, Z.; Gong, Y. J.; Zhou, W.; Ma, L. L.; Yu, J. J.; Idrobo, J. C.; Jung, J.; MacDonald, A. H.; Vajtai, R.; Lou, J.; Ajayan, P. M. Nat. Commun. 2013, 4, 1.

    54. [54]

      Yi, M.; Shen, Z. G.; Zhao, X. H.; Liang, S. S.; Liu, L. Appl. Phys. Lett. 2014, 104, 143101.  doi: 10.1063/1.4870530

    55. [55]

      Liu, K.; Zhang, G. G.; Pu, J. B.; Ma, F.; Wu, G. Z.; Lu, Z. H. Ceram. Int. 2018, 44, 13888.  doi: 10.1016/j.ceramint.2018.04.236

    56. [56]

      Zhang, J.; Yang, Y. C.; Lou, J. Nanotechnology 2016, 27, 364004.  doi: 10.1088/0957-4484/27/36/364004

    57. [57]

      Mahvash, F.; Eissa, S.; Bordjiba, T.; Tavares, A. C.; Szkopek, T.; Siaj, M. Sci Rep 2017, 7, 42139.  doi: 10.1038/srep42139

    58. [58]

      Miller, R. J.; Adeleye, A. S.; Page, H. M.; Kui, L.; Lenihan, H. S.; Keller, A. A. J. Nanopart. Res. 2020, 22, 129.  doi: 10.1007/s11051-020-04875-x

    59. [59]

      Parra, C.; Montero-Silva, F.; Henríquez, R.; Flores, M.; Garín, C.; Ramírez, C.; Moreno, M.; Correa, J.; Seeger, M.; Haberle, P. ACS Appl. Mater. Interfaces 2015, 7, 6430.  doi: 10.1021/acsami.5b01248

    60. [60]

      Chilkoor, G.; Karanam, S. P.; Star, S.; Shrestha, N.; Sani, R. K.; Upadhyayula, V. K. K.; Ghoshal, D.; Koratkar, N. A.; Meyyappan, M.; Gadhamshetty, V. ACS Nano 2018, 12, 2242.  doi: 10.1021/acsnano.7b06211

    61. [61]

      Shen, L. T.; Zhao, Y. D.; Wang, Y.; Song, R. B.; Yao, Q.; Chen, S. S.; Chai, Y. J. Mater. Chem. A 2016, 4, 5044.  doi: 10.1039/C6TA01604A

    62. [62]

      Li, L. H.; Xing, T.; Chen, Y.; Jones, R. Adv. Mater. Interfaces 2014, 1, 1300132.  doi: 10.1002/admi.201300132

    63. [63]

      Percival, S. J.; Melia, M. A.; Alexander, C. L.; Nelson, D. W.; Schindelholz, E. J.; Spoerke, E. D. Surf. Coat. Int. 2020, 383, 125228.  doi: 10.1016/j.surfcoat.2019.125228

    64. [64]

      Zhang, X. F.; Chen, Y. Q.; Hu, J. M. Corros. Sci. 2020, 166, 108452.  doi: 10.1016/j.corsci.2020.108452

    65. [65]

      Sharifalhoseini, Z.; Entezari, M. H.; Davoodi, A.; Shahidi, M. J. Ind. Eng. Chem. 2020, 83, 333.  doi: 10.1016/j.jiec.2019.12.006

    66. [66]

      Ghomi, E. R.; Khorasani, S. N.; Kichi, M. K.; Dinari, M.; Ataei, S.; Enayati, M. H.; Koochaki, M. S.; Neisiany, R. E. Colloid. Polym. Sci. 2020, 298, 213.  doi: 10.1007/s00396-019-04597-0

    67. [67]

      Husain, E.; Narayanan, T. N.; Taha-Tijerina, J. J.; Vinod, S.; Vajtai, R.; Ajayan, P. M. ACS Appl. Mater. Interfaces 2013, 5, 4129.  doi: 10.1021/am400016y

    68. [68]

      Yi, M.; Shen, Z. G.; Liu, L.; Liang, S. S. RSC Adv. 2015, 5, 2983.  doi: 10.1039/C4RA09156F

    69. [69]

      Simonov, K.; Vinogradov, N. A.; Ng, M. L.; Vinogradov, A.; Mårtensson, N.; Preobrajenski, A. B. Surf. Sci. 2012, 606, 564.  doi: 10.1016/j.susc.2011.11.031

    70. [70]

      Petravic, M.; Peter, R.; Kavre, I.; Li, L. H.; Chen, Y.; Fan, L. J.; Yang, Y. W. Phys. Chem. Chem. Phys. 2010, 12, 15349.  doi: 10.1039/c0cp00984a

    71. [71]

      Prasai, D.; Tuberquia, J. C.; Harl, R. R.; Jennings, G. K.; Bolotin, K. I. ACS Nano 2012, 6, 1102.  doi: 10.1021/nn203507y

    72. [72]

      Sun, W.; Wang, L. D.; Wu, T. T.; Pan, Y. Q.; Liu, G. C. Carbon 2014, 79, 605.  doi: 10.1016/j.carbon.2014.08.021

    73. [73]

      Camilli, L.; Yu, F.; Cassidy, A.; Hornekaer, L.; Boggild, P. 2D Mater. 2019, 6, 022002.  doi: 10.1088/2053-1583/ab04d4

    74. [74]

      Sun, W.; Wang, L. D.; Wu, T. T.; Pan, Y. Q.; Liu, G. C. J. Electrochem. Soc. 2016, 163, C16.  doi: 10.1149/2.0301602jes

    75. [75]

      Chen, J.; Chen, B.; Li, J. Y.; Tong, X.; Zhao, H. C.; Wang, L. P. Polym. Int. 2017, 66, 659.  doi: 10.1002/pi.5296

    76. [76]

      Pathan, S.; Ahmad, S. J. Mater. Chem. A 2013, 1, 14227.  doi: 10.1039/c3ta13126b

    77. [77]

      Gu, L.; Liu, S.; Zhao, H. C.; Yu, H. B. ACS Appl. Mater. Interfaces 2015, 7, 17641.  doi: 10.1021/acsami.5b05531

    78. [78]

      Zhao, H. C.; Ding, J. H.; Yu, H. B. ChemistrySelect 2018, 3, 11277.  doi: 10.1002/slct.201802079

    79. [79]

      Yu, J. J.; Zhao, W. J.; Liu, G.; Wu, Y. M.; Wang, D. L. Surf. Topogr.-Metrol. Prop. 2018, 6, 034019.  doi: 10.1088/2051-672X/aad5ab

    80. [80]

      Cui, M. J.; Ren, S. M.; Qin, S. L.; Xue, Q. J.; Zhao, H. C.; Wang, L. P. Corros. Sci. 2018, 131, 187.  doi: 10.1016/j.corsci.2017.11.022

    81. [81]

      Zou, B. J.; Chang, X. J.; Yang, J. X.; Wang, S. C.; Xu, J. L.; Wang, S. R.; Samukawa, S.; Wang, L. Prog. Org. Coat. 2019, 133, 139.  doi: 10.1016/j.porgcoat.2019.04.040

    82. [82]

      Huang, H. W.; Huang, X. F.; Xie, Y. H.; Tian, Y. Q.; Jiang, X.; Zhang, X. Y.; Prog. Org. Coat. 2019, 130, 124.  doi: 10.1016/j.porgcoat.2019.01.059

    83. [83]

      Zhang, C. L.; He, Y.; Li, F.; Di, H. H.; Zhang, L.; Zhan, Y. Q. J. Alloy. Compd. 2016, 685, 743.  doi: 10.1016/j.jallcom.2016.06.220

    84. [84]

      Li, X. Y.; Bandyopadhyay, P.; Kshetri, T.; Kim, N. H.; Lee, J. H. J. Mater. Chem. A 2018, 6, 21501.  doi: 10.1039/C8TA08351G

  • 加载中
    1. [1]

      Li Jiang Changzheng Chen Yang Su Hao Song Yanmao Dong Yan Yuan Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002

    2. [2]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    3. [3]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    4. [4]

      Hanxue LIUShijie LIMeng RENXuling XUEHongke LIU . Design and antitumor properties of dehydroabietic acid functionalized cyclometalated iridium(Ⅲ) complex. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1483-1494. doi: 10.11862/CJIC.20250031

    5. [5]

      Shiyang HeDandan ChuZhixin PangYuhang DuJiayi WangYuhong ChenYumeng SuJianhua QinXiangrong PanZhan ZhouJingguo LiLufang MaChaoliang Tan . Pt Single-Atom-Functionalized 2D Al-TCPP MOF Nanosheets for Enhanced Photodynamic Antimicrobial Therapy. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-0. doi: 10.1016/j.actphy.2025.100046

    6. [6]

      Zeyu LiuWenze HuangYang XiaoJundong ZhangWeijin KongPeng WuChenzi ZhaoAibing ChenQiang Zhang . Nanocomposite Current Collectors for Anode-Free All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2305040-0. doi: 10.3866/PKU.WHXB202305040

    7. [7]

      Weihan ZhangMenglu WangAnkang JiaWei DengShuxing Bai . Surface Sulfur Species Influence Hydrogenation Performance of Palladium-Sulfur Nanosheets. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-0. doi: 10.3866/PKU.WHXB202309043

    8. [8]

      Ruizhi DuanXiaomei WangPanwang ZhouYang LiuCan Li . The role of hydroxyl species in the alkaline hydrogen evolution reaction over transition metal surfaces. Acta Physico-Chimica Sinica, 2025, 41(9): 100111-0. doi: 10.1016/j.actphy.2025.100111

    9. [9]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    10. [10]

      Wenjie SHIFan LUMengwei CHENJin WANGYingfeng HAN . Synthesis and host-guest properties of imidazolium-functionalized zirconium metal-organic cage. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 105-113. doi: 10.11862/CJIC.20240360

    11. [11]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    12. [12]

      Tingting XUWenjing ZHANGYongbo SONG . Research advances of atomic precision coinage metal nanoclusters in tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2275-2285. doi: 10.11862/CJIC.20240229

    13. [13]

      Fanpeng MengFei ZhaoJingkai LinJinsheng ZhaoHuayang ZhangShaobin Wang . Optimizing interfacial electric fields in carbon nitride nanosheet/spherical conjugated polymer S-scheme heterojunction for hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-0. doi: 10.1016/j.actphy.2025.100095

    14. [14]

      Lutian ZhaoYangge GuoLiuxuan LuoXiaohui YanShuiyun ShenJunliang Zhang . Electrochemical Synthesis for Metallic Nanocrystal Electrocatalysts: Principle, Application and Challenge. Acta Physico-Chimica Sinica, 2024, 40(7): 2306029-0. doi: 10.3866/PKU.WHXB202306029

    15. [15]

      Zhongyan Cao Youzhi Xu Menghua Li Xiao Xiao Xianqiang Kong Deyun Qian . Electrochemically Driven Denitrative Borylation and Fluorosulfonylation of Nitroarenes. University Chemistry, 2025, 40(4): 277-281. doi: 10.12461/PKU.DXHX202407017

    16. [16]

      Heng ChenLonghui NieKai XuYiqiong YangCaihong Fang . Remarkable Photocatalytic H2O2 Production Efficiency over Ultrathin g-C3N4 Nanosheet with Large Surface Area and Enhanced Crystallinity by Two-Step Calcination. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-0. doi: 10.3866/PKU.WHXB202406019

    17. [17]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    18. [18]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    19. [19]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    20. [20]

      Ruiqin FengYe FanYun FangYongmei Xia . Strategy for Regulating Surface Protrusion of Gold Nanoflowers and Their Surface-Enhanced Raman Scattering. Acta Physico-Chimica Sinica, 2024, 40(4): 2304020-0. doi: 10.3866/PKU.WHXB202304020

Metrics
  • PDF Downloads(92)
  • Abstract views(4234)
  • HTML views(1211)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return