Citation: Zhang Liang, Zhao Wen-Long, Li Meng, Lu Hai-Yan, Chen Chuan-Feng. Recent Progress on Room-Temperature Phosphorescent Materials of Organic Small Molecules[J]. Acta Chimica Sinica, ;2020, 78(10): 1030-1040. doi: 10.6023/A20060243 shu

Recent Progress on Room-Temperature Phosphorescent Materials of Organic Small Molecules

  • Corresponding author: Lu Hai-Yan, haiyanlu@ucas.ac.cn Chen Chuan-Feng, cchen@iccas.ac.cn
  • Received Date: 17 June 2020
    Available Online: 13 July 2020

    Fund Project: Project supported by the National Natural Science Foundation of China (Nos. 91956119, 21971235, 21871272)the National Natural Science Foundation of China 21971235the National Natural Science Foundation of China 91956119the National Natural Science Foundation of China 21871272

Figures(23)

  • Room-temperature phosphorescence (RTP) can not only intuitively reflect the excited state transition process of the phosphorescent luminescence, but also has wide potential applications in optoelectronics, sensing, bioimaging and security devices. Consequently, more and more attention and interests on RTP materials have been attracted, which turned it to be one of hot topics in luminescence materials, especially, organic luminescence materials in recent years. The halogen bonds and hydrogen bonds between the molecules can fix the phosphor to suppress non-radiative transitions. A twisted donor-acceptor skeleton can promot efficient thermally activated delayed fluorescence (TADF) and also benefit to the RTP. Moreover, circularly polarized room-temperature phosphorescence (CP-RTP) also remains a daunting challenge to implant circularly polarized luminescence (CPL) in metal-free RTP materials. This review summarizes recent research progress on RTP of small organic molecules, mainly focusing on RTP materials based on hydrogen bonds, RTP materials containing halogens, RTP materials based on D-A structures and RTP materials with CPL properties.
  • 加载中
    1. [1]

      Wang, H.; Meng, L. Q.; Shen, X. X.; Wei, X.; Zheng, X.; Lv, X.; Yi, Y.; Wang, Y.; Wang, P. Adv. Mater. 2015, 27, 4041.  doi: 10.1002/adma.201501373

    2. [2]

      Yang, J.; Zhen, X.; Wang, B.; Gao, X.; Ren, Z.; Wang, J.; Xie, Y.; Li, J.; Peng, Q.; Pu, K.; Li, Z. Nat. Commun. 2018, 9, 840.  doi: 10.1038/s41467-018-03236-6

    3. [3]

      Li, J.; Jiang, Y.; Cheng, J.; Su, H.; Lam, J. W. Y.; Sung, H. H. Y.; Wong, K. S.; Kwok, H. S.; Tang, B. Z. Phys. Chem. Chem. Phys. 2015, 17, 1134.  doi: 10.1039/C4CP04052J

    4. [4]

      Miao, Q.; Xie, C.; Zhen, X.; Lyu, Y.; Duan, H.; Liu, X.; Jokerst, J. V.; Pu, K. Nat. Biotechnol. 2017, 35, 1102.  doi: 10.1038/nbt.3987

    5. [5]

      Wang, F.; Tao, Y.; Huang, W. Acta Chim. Sinica 2015, 73, 9 (in Chinese).
       

    6. [6]

      Ma, Y.; Chen, K.; Guo, Z.; Liu, S.; Zhao, Q.; Wong, W. Y. Acta Chim. Sinica 2020, 78, 23 (in Chinese).
       

    7. [7]

      Zhou, Y.; Chen, Y. Z.; Cao, J. H.; Yang, Q. Z.; Wu, L. Z.; Tung, C. H.; Wu, D. Y. Dyes Pigm. 2015, 112, 162.  doi: 10.1016/j.dyepig.2014.07.001

    8. [8]

      Mukherjee, S.; Thilagar, P. Chem. Commun. 2015, 51, 10988.  doi: 10.1039/C5CC03114A

    9. [9]

      Ma, H.; Peng, Q.; An, Z.; Huang, W.; Shuai, Z. J. Am. Chem. Soc. 2019, 141, 1010.  doi: 10.1021/jacs.8b11224

    10. [10]

      Xiao, L.; Fu, H. Chem. Eur. J. 2019, 25, 714.  doi: 10.1002/chem.201802819

    11. [11]

      Hirata, S. Adv. Opt. Mater. 2017, 5, 1700116.  doi: 10.1002/adom.201700116

    12. [12]

      Forni, A.; Lucenti, E.; Botta, C.; Cariati, E. J. Mater. Chem. C 2018, 6, 4603.  doi: 10.1039/C8TC01007B

    13. [13]

      Xu, S.; Chen, R.; Zheng, C.; Huang, W. Adv. Mater. 2016, 28, 9920.  doi: 10.1002/adma.201602604

    14. [14]

      Zhang, T.; Ma, X.; Wu, H.; Zhu, L.; Zhao, Y.; Tian, H. Angew. Chem., Int. Ed. 2020, 59, 2.  doi: 10.1002/anie.201914768

    15. [15]

      Gan, N.; Shi, H.; An, Z.; Huang, W. Adv. Funct. Mater. 2018, 28, 1802657.  doi: 10.1002/adfm.201802657

    16. [16]

      Ma, X.; Wang, J.; Tian, H. Acc. Chem. Res. 2019, 52, 738.  doi: 10.1021/acs.accounts.8b00620

    17. [17]

      Li, Q.; Li, Z. Acc. Chem. Res. 2020, 53, 962.  doi: 10.1021/acs.accounts.0c00060

    18. [18]

      Cai, S.; Shi, H.; Li, J.; Gu, L.; Ni, Y.; Cheng, Z.; Wang, S.; Xiong, W. W.; Li, L.; An, Z.; Huang, W. Adv. Mater. 2017, 29, 1701244.  doi: 10.1002/adma.201701244

    19. [19]

      An, Z.; Zheng, C.; Tao, Y.; Chen, R.; Shi, H.; Chen, T.; Wang, Z.; Li, H.; Deng, R.; Liu, X.; Huang, W. Nat. Mater. 2015, 14, 685.  doi: 10.1038/nmat4259

    20. [20]

      Zhao, W.; He, Z.; Lam, J. W. Y.; Peng, Q.; Ma, H.; Shuai, Z.; Bai, G.; Hao, J.; Tang, B. Z. Chem. 2016, 1, 592.  doi: 10.1016/j.chempr.2016.08.010

    21. [21]

      Gu, L.; Shi, H.; Bian, L.; Gu, M.; Ling, K.; Wang, X.; Ma, H.; Cai, S.; Ning, W.; Fu, L.; Wang, H.; Wang, S.; Gao, Y.; Yao, W.; Huo, F.; Tao, Y.; An, Z.; Liu, X.; Huang, W. Nat. Photonics 2019, 13, 406.  doi: 10.1038/s41566-019-0408-4

    22. [22]

      Kwon, M. S.; Lee, D.; Seo, S.; Jung, J.; Kim, J. Angew. Chem., Int Ed. 2014, 53, 11177.  doi: 10.1002/anie.201404490

    23. [23]

      Gong, Y.; Zhao, L.; Peng, Q.; Fan, D.; Yuan, W. Z.; Zhang, Y.; Tang, B. Z. Chem. Sci. 2015, 6, 4438.  doi: 10.1039/C5SC00253B

    24. [24]

      Chai, Z.; Wang, C.; Wang, J.; Fan, Liu.; Xie, Y.; Zhang, Y. Z.; Li, J. R.; Li, Q.; Li, Z. Chem. Sci. 2017, 8, 8336.  doi: 10.1039/C7SC04098A

    25. [25]

      Fang, M.; Yang, J.; Xiang, X.; Xie, Y.; Dong, Y.; Peng, Q.; Li, Q.; Li, Z. Mater. Chem. Front. 2018, 2, 2124.  doi: 10.1039/C8QM00396C

    26. [26]

      Li, D.; Lu, F.; Wang, J.; Hu, W.; Cao, X. M.; Ma, X.; Tian, H. J. Am. Chem. Soc. 2018, 140, 1916.  doi: 10.1021/jacs.7b12800

    27. [27]

      Chen, J.; Yu, T.; Ubba, E.; Yang, Z.; Zhang, Y.; Liu, S.; Xu, J.; Aldred, M. P.; Chi, Z. Adv. Opt. Mater. 2019, 7, 1801593.  doi: 10.1002/adom.201801593

    28. [28]

      Chen, X.; Liu, Z. F.; Jin, W. J. J. Phys. Chem. A. 2020, 124, 2746.  doi: 10.1021/acs.jpca.9b11943

    29. [29]

      Bolton, O.; Lee, K.; Kim, H. J.; Lin, K. Y.; Kim, J. Nat. Chem. 2011, 3, 205.  doi: 10.1038/nchem.984

    30. [30]

      Xiao, L.; Wu, Y.; Yu, Z.; Xu, Z.; Li, J.; Liu, Y.; Yao, J.; Fu, H. Chem. Eur. J. 2018, 24, 1801.  doi: 10.1002/chem.201705391

    31. [31]

      Li, B.; Gong, Y.; Wang, L.; Lin, H.; Li, Q.; Guo, F.; Li, Z.; Peng, Q.; Shuai, Z.; Zhao, L.; Zhang, Y. J. Phys. Chem. Lett. 2019, 10, 7141.  doi: 10.1021/acs.jpclett.9b02885

    32. [32]

      Goudappagouda; Manthanath, A.; Wakchaure, V. C.; Ranjeesh, K. C.; Das T.; Vanka, K.; Nakanishi, T.; Babu, S. S. Angew. Chem., Int. Ed. 2019, 58, 2284.  doi: 10.1002/anie.201811834

    33. [33]

      Zhang, L.; Li, M.; Gao, Q.; Chen, C. F. Chin. J. Org. Chem. 2020, 40, 516 (in Chinese).

    34. [34]

      She, P.; Yu, Y.; Qin, Y.; Zhang, Y.; Li, F.; Ma, Y.; Liu, S.; Huang, W.; Zhao, Q. Adv. Opt. Mater. 2020, 8, 1901437.  doi: 10.1002/adom.201901437

    35. [35]

      Yu, L.; Wu, Z.; Zhong, C.; Xie, G.; Zhu, Z.; Ma D.; Yang, C. Adv. Opt. Mater. 2017, 5, 1700588.  doi: 10.1002/adom.201700588

    36. [36]

      Xiong, Y.; Zhao, Z.; Zhao, W.; Ma, H.; Peng, Q.; He, Z.; Zhang, X.; Chen, Y.; He, X.; Lam, J. W. Y.; Tang, B. Z. Angew. Chem., Int. Ed. 2018, 57, 7997.  doi: 10.1002/anie.201800834

    37. [37]

      Zhou, Y.; Qin, W.; Du, C.; Gao, H.; Zhu, F.; Liang, G. Angew. Chem., Int. Ed. 2019, 58, 12102.  doi: 10.1002/anie.201906312

    38. [38]

      Zhang, L.; Li, M.; Hu, T. P.; Wang, Y. F.; Shen, Y. F.; Yi, Y. P.; Lu, H. Y.; Gao, Q. Y.; Chen, C. F. Chem. Commun. 2019, 55, 12172.  doi: 10.1039/C9CC06384F

    39. [39]

      Zhang, L.; Li, M.; Gao, Q. Y.; Chen, C. F. Chem. Commun. 2020, 56, 4296.  doi: 10.1039/C9CC09636A

    40. [40]

      Hirata, S.; Vacha, M. J. Phys. Chem. Lett. 2016, 7, 1539.  doi: 10.1021/acs.jpclett.6b00554

    41. [41]

      Chen, W.; Tian, Z.; Li, Y.; Jiang, Y.; Liu, M.; Duan, P. Chem. Eur. J. 2018, 24, 17444.  doi: 10.1002/chem.201804342

    42. [42]

      Liang, X.; Liu, T. T.; Yan, Z. P.; Zhou, Y.; Su, J.; Luo, X. F.; Wu, Z. G.; Wang, Y.; Zheng, Y. X.; Zuo, J. L. Angew. Chem., Int. Ed. 2019, 58, 17220.  doi: 10.1002/anie.201909076

    43. [43]

      Li, H.; Li, H.; Wang, W.; Wang, S.; Yang, Q.; Jiang, Y.; Zheng, C.; Huang, W.; Chen, R. Angew. Chem., Int. Ed. 2020, 59, 4756.  doi: 10.1002/anie.201915164

    44. [44]

      Li, M.; Lin, W. B.; Fang, L.; Chen, C. F. Acta Chim. Sinica 2017, 75, 1150 (in Chinese).
       

    45. [45]

      Zhang, D. W.; Li, M.; Chen, C. F. Chem. Soc. Rev. 2020, 49, 1331.  doi: 10.1039/C9CS00680J

  • 加载中
    1. [1]

      Xian BISisi WANGJinyue ZHANGYujia PENGZhen SHENHua LU . Discovery, development, and perspectives of circularly polarized luminescent materials based on β-isoindigo skeletons. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1049-1057. doi: 10.11862/CJIC.20240456

    2. [2]

      Wenkai Chen Yunjia Shen Xiangmeng Kong Yanli Zeng . Quantum Chemistry Calculation of Key Physical Quantity in Circularly Polarized Luminescence: Introducing an Exploratory Computational Chemistry Experiment. University Chemistry, 2025, 40(3): 83-91. doi: 10.12461/PKU.DXHX202405018

    3. [3]

      Wenli FENGLu ZHAOYunfeng BAIFeng FENG . Research progress on ultralong room temperature phosphorescent carbon dots. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 833-846. doi: 10.11862/CJIC.20240308

    4. [4]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    5. [5]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    6. [6]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

    7. [7]

      Qianlang Wang Jijun Sun Qian Chen Quanqin Zhao Baojuan Xi . The Appeal of Organophosphorus Compounds: Clearing Their Name. University Chemistry, 2025, 40(4): 299-306. doi: 10.12461/PKU.DXHX202405205

    8. [8]

      Lewang Yuan Yaoyao Peng Zong-Jie Guan Yu Fang . 二维共价有机框架作为光催化剂在有机合成中的研究进展. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-. doi: 10.1016/j.actphy.2025.100086

    9. [9]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    10. [10]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    11. [11]

      Feng Sha Xinyan Wu Ping Hu Wenqing Zhang Xiaoyang Luan Yunfei Ma . Design of Course Ideology and Politics for the Comprehensive Organic Synthesis Experiment of Benzocaine. University Chemistry, 2024, 39(2): 110-115. doi: 10.3866/PKU.DXHX202307082

    12. [12]

      Xinyu Zhu Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106

    13. [13]

      Yong Wang Yingying Zhao Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009

    14. [14]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    15. [15]

      Bin HEHao ZHANGLin XUYanghe LIUFeifan LANGJiandong PANG . Recent progress in multicomponent zirconium?based metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2041-2062. doi: 10.11862/CJIC.20240161

    16. [16]

      Xiaofang DONGYue YANGShen WANGXiaofang HAOYuxia WANGPeng CHENG . Research progress of conductive metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 14-34. doi: 10.11862/CJIC.20240388

    17. [17]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    18. [18]

      Lina Feng Guoyu Jiang Xiaoxia Jian Jianguo Wang . Application of Organic Radical Materials in Biomedicine. University Chemistry, 2025, 40(4): 253-260. doi: 10.12461/PKU.DXHX202405171

    19. [19]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    20. [20]

      Yongjian Zhang Fangling Gao Hong Yan Keyin Ye . Electrochemical Transformation of Organosulfur Compounds. University Chemistry, 2025, 40(5): 311-317. doi: 10.12461/PKU.DXHX202407035

Metrics
  • PDF Downloads(215)
  • Abstract views(6273)
  • HTML views(2235)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return