Citation: Zhang Xuhan, Deng Bowen, Fan Haidong, Huang Wenhui, Zhang Yanwei. Photo-thermochemical CO2 Splitting Based on Zinc-germanium Binary Oxide[J]. Acta Chimica Sinica, ;2020, 78(10): 1120-1126. doi: 10.6023/A20060230 shu

Photo-thermochemical CO2 Splitting Based on Zinc-germanium Binary Oxide

  • Corresponding author: Zhang Yanwei, zhangyw@zju.edu.cn
  • Received Date: 12 June 2020
    Available Online: 18 August 2020

    Fund Project: Zhejiang Provincial Natural Science Foundation LR18E060001Project supported by the National Natural Science Foundation of China (No. 51976190), Zhejiang Provincial Natural Science Foundation (LR18E060001), and the Fundamental Research Funds for the Central Universities (No. 2019FZA4013)The Fundamental Research Funds for the Central Universities 2019FZA4013The National Natural Science Foundation of China 51976190

Figures(10)

  • Using solar energy to split CO2 can realize the conversion and storage of solar energy at the same time, and alleviate the carbon emissions caused by the transitional use of fossil energy. Solar energy based photo-thermochemical reaction is a promising method for the CO2 splitting. To further study the photo-thermochemical reaction mechanism and explore the non-titanium-based catalytic materials, the ZnO/Zn2GeO4 composite material (Z/ZGO) was prepared by solution precipitation method and used for photo-thermochemical CO2 splitting. Composite semiconductor combined the advantages of the two components which made CO production reach 5.55 times that of pure ZnO. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive spectrometer (EDS), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) were used to illustrate the crystal structure and chemical composition of the samples. The XRD pattern found that the samples crystallized well, and no obvious crystal form changes occurred after the reaction. Using SEM to observe the samples before and after the reaction, the particle size did not increase significantly and no obvious sintering phenomenon was found, which indicated that the material has good reaction stability. Photoluminescence (PL), UV-visible diffuse reflectance spectra (UV-visible DRS) and Mott-Schottky plots were used to evaluate the material's light absorption characteristics and energy band position. The band gap of ZnO and Zn2GeO4 samples were 3.27 eV and 4.56 eV, respectively, and the heterojunction was formed in the Z/ZGO sample. The presence of ZnO extended the spectral response range of Zn2GeO4, and due to the migration of photogenerated electron-hole pairs (EHPs) to ZnO, the recombination of EHPs was reduced. XPS analyses were also used to investigate change of oxygen vacancies during the reaction. The O 1s XPS spectra of the samples in the three cases (Case A:before light irradiation, Case B:after light irradiation and Case C:after reaction) were analyzed and found that the signal of the oxygen near the vacancies increased after light irradiation and decreased after reaction, which may indicate that oxygen vacancies were formed after light irradiation then consumed by CO2 in the reaction. The Zn2GeO4 sample showed the largest increase in oxygen vacancies signal after light irradiation, indicating that Zn2GeO4 had a strong ability to form oxygen vacancies. Zn2GeO4 improves the capacity of oxygen vacancies formation in the sample, and further improved the yield of photo-thermochemical CO2 splitting reaction. As a result, Z/ZGO combined the advantages of ZnO in light response and Zn2GeO4 in oxygen vacancies formation and improved the CO2 splitting yield. This research has a positive effect on expanding the photo-thermochemical material system and further deepening the photo-thermochemical reaction mechanism.
  • 加载中
    1. [1]

      Shih, C. F.; Zhang, T.; Li, J. H.; Bai, C. L. Joule 2018, 2, 1925.  doi: 10.1016/j.joule.2018.08.016

    2. [2]

      Shahsavari, A.; Akbari, M. Renew. Sust. Energ. Rev. 2018, 90, 275.  doi: 10.1016/j.rser.2018.03.065

    3. [3]

      Fu, J. W.; Yu, J. G.; Jiang, C. J.; Cheng, B. Adv. Energy Mater. 2018, 8, 1701503.  doi: 10.1002/aenm.201701503

    4. [4]

      Yang, L.; Chen, Z. G.; Dargusch, M. S.; Zou, J. Adv. Energy Mater. 2018, 8, 1701797.  doi: 10.1002/aenm.201701797

    5. [5]

      Guo, L.; Yang, Z.; Marcus, K.; Li, Z.; Luo, B.; Zhou, L.; Wang, X.; Du, Y.; Yang, Y. Energy Environ. Sci. 2018, 11, 106.  doi: 10.1039/C7EE02464A

    6. [6]

      Yan, J. Y.; Wang, C. H.; Ma, H.; Li, Y. Y.; Liu, Y. C.; Suzuki, N.; Terashima, C.; Fujishima, A.; Zhang, X. T. Appl. Catal. B-Environ. 2020, 268, 118401.  doi: 10.1016/j.apcatb.2019.118401

    7. [7]

      Wang, L.; Ma, T.; Dai, S.; Ren, T.; Chang, Z.; Dou, L.; Fu, M.; Li, X. Chem. Eng. J. 2020, 389, 124426.  doi: 10.1016/j.cej.2020.124426

    8. [8]

      Sun, S.; An, Q.; Watanabe, M.; Cheng, J.; Kim, H. H.; Akbay, T.; Takagaki, A.; Ishihara, T. Appl. Catal. B-Environ. 2020, 271, 118931.  doi: 10.1016/j.apcatb.2020.118931

    9. [9]

      Thompson, W. A.; Fernandez, E. S.; Maroto-Valer, M. M. ACS Sustain. Chem. Eng. 2020, 8, 4677.  doi: 10.1021/acssuschemeng.9b06170

    10. [10]

      Carrillo, R. J.; Scheffe, J. R. Energy Fuels 2019, 33, 12871.  doi: 10.1021/acs.energyfuels.9b02714

    11. [11]

      Marxer, D.; Furler, P.; Takacs, M.; Steinfeld, A. Energy Environ. Sci. 2017, 10, 1142.  doi: 10.1039/C6EE03776C

    12. [12]

      Agrafiotis, C.; Roeb, M.; Sattler, C. Renew. Sust. Energ. Rev. 2015, 42, 254.  doi: 10.1016/j.rser.2014.09.039

    13. [13]

      Xu, C.; Hong, J.; Sui, P.; Zhu, M.; Zhang, Y.; Luo, J.-L. Cell Rep. Phys. Sci. 2020, 1, 100101.  doi: 10.1016/j.xcrp.2020.100101

    14. [14]

      Qi, Y.; Song, L.; Ouyang, S.; Liang, X.; Ning, S.; Zhang, Q.; Ye, J. Adv. Mater. 2020, 32, 1903915.  doi: 10.1002/adma.201903915

    15. [15]

      Feng, C.; Tang, L.; Deng, Y.; Wang, J.; Liu, Y.; Ouyang, X.; Chen, Z.; Yang, H.; Yu, J.; Wang, J. Appl. Catal. B-Environ. 2020, 276, 119167.  doi: 10.1016/j.apcatb.2020.119167

    16. [16]

      Cai, Q.; Wang, F.; He, J. Z.; Dan, M.; Cao, Y. H.; Yu, S.; Zhou, Y. Appl. Surf. Sci. 2020, 517, 146198.  doi: 10.1016/j.apsusc.2020.146198

    17. [17]

      Zhao, L.; Qi, Y.; Song, L.; Ning, S.; Ouyang, S.; Xu, H.; Ye, J. Angew. Chem. Int. Ed. 2019, 58, 7708.  doi: 10.1002/anie.201902324

    18. [18]

      Zhang, Y.; Xu, C.; Chen, J.; Zhang, X.; Wang, Z.; Zhou, J.; Cen, K. Appl. Energy. 2015, 156, 223.  doi: 10.1016/j.apenergy.2015.07.028

    19. [19]

      Zhang, Y.; Chen, J.; Xu, C.; Zhou, K.; Wang, Z.; Zhou, J.; Cen, K. Int. J. Hydrog. Energy 2016, 41, 2215.  doi: 10.1016/j.ijhydene.2015.12.067

    20. [20]

      Xu, C.; Zhang, Y.; Pan, F.; Huang, W.; Deng, B.; Liu, J.; Wang, Z.; Ni, M.; Cen, K. Nano Energy 2017, 41, 308.  doi: 10.1016/j.nanoen.2017.09.023

    21. [21]

      Bhatta, S.; Nagassou, D.; Trelles, J. P. Solar Energy 2017, 142, 253.  doi: 10.1016/j.solener.2016.12.031

    22. [22]

      Li, Y.; Peng, Y. K.; Hu, L.; Zheng, J.; Prabhakaran, D.; Wu, S.; Puchtler, T. J.; Li, M.; Wong, K. Y.; Taylor, R. A.; Tsang, S. C. E. Nat Commun 2019, 10, 4421.  doi: 10.1038/s41467-019-12385-1

    23. [23]

      Bhosale, R. R. Int. J. Hydrog. Energy 2020, 45, 5760.  doi: 10.1016/j.ijhydene.2019.05.191

    24. [24]

      Carrillo, R. J.; Scheffe, J. R. Solar Energy 2017, 156, 3.  doi: 10.1016/j.solener.2017.05.032

    25. [25]

      Ebadi, A.; Mozaffari, M. J. Nanostructures 2020, 10, 1.

    26. [26]

      Pei, L.; Xu, Y.; Liu, J.; Wu, J.; Han, Y.; Zhang, X. J. Am. Ceram. Soc. 2019, 102, 6517.  doi: 10.1111/jace.16605

    27. [27]

      Wang, Y.; Zheng, M.; Zhao, H.; Qin, H.; Fan, W.; Zhao, X. Phys. Chem. Chem. Phys. 2020, 22, 10265.  doi: 10.1039/D0CP01308K

    28. [28]

      Zhang, H.; Chen, Y.; Zhu, X.; Zhou, H.; Yao, Y.; Li, X. Int. J. Energy Res. 2019, 43, 5013.  doi: 10.1002/er.4643

    29. [29]

      Xu, C.; Huang, W.; Li, Z.; Deng, B.; Zhang, Y.; Ni, M.; Cen, K. ACS Catal. 2018, 8, 6582.  doi: 10.1021/acscatal.8b00272

    30. [30]

      Ghoussoub, M.; Xia, M. K.; Duchesne, P. N.; Segal, D.; Ozin, G. Energy Environ. Sci. 2019, 12, 1122.  doi: 10.1039/C8EE02790K

    31. [31]

      Huang, D.; Yan, X.; Yan, M.; Zeng, G.; Zhou, C.; Wan, J.; Cheng, M.; Xue, W. ACS Appl. Mater. Interfaces 2018, 10, 21035.  doi: 10.1021/acsami.8b03620

    32. [32]

      Ong, W. J.; Tan, L. L.; Ng, Y. H.; Yong, S. T.; Chai, S. P. Chem. Rev. 2016, 116, 7159.  doi: 10.1021/acs.chemrev.6b00075

    33. [33]

      Xu, C.; Lin, J.; Pan, F.; Deng, B.; Wang, Z.; Zhou, J.; Chen, Y.; Ma, J.; Gu, Z.; Zhang, Y. Acta Chim. Sinica 2017, 75, 699.
       

    34. [34]

      Kumar, P.; Kumar, A.; Rizvi, M. A.; Moosvi, S. K.; Krishnan, V.; Duvenhage, M. M.; Roos, W. D.; Swart, H. C. Appl. Surf. Sci. 2020, 514, 145930.  doi: 10.1016/j.apsusc.2020.145930

    35. [35]

      Tong, Z. K.; Fang, S.; Zheng, H.; Zhang, X. G. Acta Chim. Sinica 2016, 74, 185.
       

    36. [36]

      Zhou, J.; Zhang, W.; Zhao, H.; Tian, J.; Zhu, Z.; Lin, N.; Qian, Y. ACS Appl. Mater. Interfaces 2019, 11, 22371.  doi: 10.1021/acsami.9b05003

    37. [37]

      Zhang, F.; Li, Y.-H.; Qi, M.-Y.; Tang, Z.-R.; Xu, Y.-J. Appl. Catal. B-Environ. 2020, 268, 118380.  doi: 10.1016/j.apcatb.2019.118380

    38. [38]

      Adhikari, S.; Kim, D.-H. Appl. Surf. Sci. 2020, 511, 145595.  doi: 10.1016/j.apsusc.2020.145595

    39. [39]

      Docao, S.; Koirala, A. R.; Kim, M. G.; Hwang, I. C.; Song, M. K.; Yoon, K. B. Energy Environ. Sci. 2017, 10, 628.  doi: 10.1039/C6EE02974D

    40. [40]

      Long, X.; Gao, L.; Li, F.; Hu, Y.; Wei, S.; Wang, C.; Wang, T.; Jin, J.; Ma, J. Appl. Catal. B 2019, 257, 117813.  doi: 10.1016/j.apcatb.2019.117813

    41. [41]

      Mandal, S.; Ananthakrishnan, R. Inorg. Chem. 2020, 59, 7681.  doi: 10.1021/acs.inorgchem.0c00666

    42. [42]

      Low, J. X.; Yu, J. G.; Jaroniec, M.; Wageh, S.; Al-Ghamdi, A. A. Adv. Mater. 2017, 29, 1601694.  doi: 10.1002/adma.201601694

    43. [43]

      Mei, Q. F.; Zhang, F. Y.; Wang, N.; Lu, W. S.; Su, X. T.; Wang, W.; Wu, R. L. Chin. J. Inorg. Chem. 2019, 35, 1321.

    44. [44]

      Luo, X.; Ke, Y.; Yu, L.; Wang, Y.; Homewood, K. P.; Chen, X.; Gao, Y. Appl. Surf. Sci. 2020, 515, 145970.  doi: 10.1016/j.apsusc.2020.145970

    45. [45]

      Du, S.-Q.; Yuan, Y.-F.; Tu, W.-X. Acta Phys.-Chim. Sin. 2013, 29, 2062.

    46. [46]

      Zhang, X.; Zhang, L.; Deng, B.; Jin, J.; Xu, C.; Zhang, Y. Catal. Commun. 2020, 138, 105955.  doi: 10.1016/j.catcom.2020.105955

    47. [47]

      Tien, L.-C.; Yang, F.-M.; Huang, S.-C.; Fan, Z.-X.; Chen, R.-S. J. Appl. Phys. 2018, 124, 174503.  doi: 10.1063/1.5054915

    48. [48]

      Kim, D. Y.; Yoon, T.; Jang, Y. J.; Lee, J. H.; Na, Y.; Lee, B. J.; Lee, J. S.; Kim, K. S. J. Phys. Chem. C 2019, 123, 14573.  doi: 10.1021/acs.jpcc.9b03728

    49. [49]

      Wang, B.; Wang, X.; Lu, L.; Zhou, C.; Xi, Z.; Wang, J.; Ke, X.-k.; Sheng, G.; Yan, S.; Zou, Z. ACS Catal. 2018, 8, 516.  doi: 10.1021/acscatal.7b02952

    50. [50]

      Liang, Y. C.; Lin, T. Y. Nanoscale Res. Lett. 2014, 9, 344.  doi: 10.1186/1556-276X-9-344

    51. [51]

      Xiao, F.-X. ACS Appl. Mater. Interfaces 2012, 4, 7052.

  • 加载中
    1. [1]

      Chunchun WangChangjun YouKe RongChuqi ShenFang YangShijie Li . An S-Scheme MIL-101(Fe)-on-BiOCl Heterostructure with Oxygen Vacancies for Boosting Photocatalytic Removal of Cr(Ⅵ). Acta Physico-Chimica Sinica, 2024, 40(7): 2307045-0. doi: 10.3866/PKU.WHXB202307045

    2. [2]

      Kun RongCuilian WenJiansen WenXiong LiQiugang LiaoSiqing YanChao XuXiaoliang ZhangBaisheng SaZhimei Sun . Hierarchical MoS2/Ti3C2Tx heterostructure with excellent photothermal conversion performance for solar-driven vapor generation. Acta Physico-Chimica Sinica, 2025, 41(6): 100053-0. doi: 10.1016/j.actphy.2025.100053

    3. [3]

      Weicheng FengJingcheng YuYilan YangYige GuoGeng ZouXiaoju LiuZhou ChenKun DongYuefeng SongGuoxiong WangXinhe Bao . Regulating the High Entropy Component of Double Perovskite for High-Temperature Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(6): 2306013-0. doi: 10.3866/PKU.WHXB202306013

    4. [4]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    5. [5]

      Ke LiChuang LiuJingping LiGuohong WangKai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009

    6. [6]

      Jiawei HuKai XiaAo YangZhihao ZhangWen XiaoChao LiuQinfang Zhang . Interfacial Engineering of Ultrathin 2D/2D NiPS3/C3N5 Heterojunctions for Boosting Photocatalytic H2 Evolution. Acta Physico-Chimica Sinica, 2024, 40(5): 2305043-0. doi: 10.3866/PKU.WHXB202305043

    7. [7]

      Yajuan XingHui XueJing SunNiankun GuoTianshan SongJiawen SunYi-Ru HaoQin Wang . Cu3P-Induced Charge-Oriented Transfer and Surface Reconstruction of Ni2P to Achieve Efficient Oxygen Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(3): 2304046-0. doi: 10.3866/PKU.WHXB202304046

    8. [8]

      Qin LiHuihui ZhangHuajun GuYuanyuan CuiRuihua GaoWei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 2402016-0. doi: 10.3866/PKU.WHXB202402016

    9. [9]

      Pengcheng YanPeng WangJing HuangZhao MoLi XuYun ChenYu ZhangZhichong QiHui XuHenan Li . Engineering Multiple Optimization Strategy on Bismuth Oxyhalide Photoactive Materials for Efficient Photoelectrochemical Applications. Acta Physico-Chimica Sinica, 2025, 41(2): 2309047-0. doi: 10.3866/PKU.WHXB202309047

    10. [10]

      Yuanyin CuiJinfeng ZhangHailiang ChuLixian SunKai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-0. doi: 10.3866/PKU.WHXB202405016

    11. [11]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    12. [12]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    13. [13]

      Tong WANGQinyue ZHONGQiong HUANGWeimin GUOXinmei LIU . Mn-doped carbon quantum dots/Fe-doped ZnO flower-like microspheres heterojunction: Construction and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1589-1600. doi: 10.11862/CJIC.20250011

    14. [14]

      Fangxuan LiuZiyan LiuGuowei ZhouTingting GaoWenyu LiuBin Sun . 中空结构光催化剂. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-0. doi: 10.1016/j.actphy.2025.100071

    15. [15]

      Yuhang ZhangWeiwei ZhaoHongwei LiuJunpeng Lü . Progress on Self-Powered Photodetectors Based on Low-Dimensional Materials. Acta Physico-Chimica Sinica, 2025, 41(3): 2310004-0. doi: 10.3866/PKU.WHXB202310004

    16. [16]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    17. [17]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    18. [18]

      Weikang WangYadong WuJianjun ZhangKai MengJinhe LiLele WangQinqin Liu . Green H2O2 synthesis via melamine-foam supported S-scheme Cd0.5Zn0.5In2S4/S-doped carbon nitride heterojunction: synergistic interfacial charge transfer and local photothermal effect. Acta Physico-Chimica Sinica, 2025, 41(8): 100093-0. doi: 10.1016/j.actphy.2025.100093

    19. [19]

      Wenjuan TanYong YeXiujuan SunBei LiuJiajia ZhouHailong LiaoXiulin WuRui DingEnhui LiuPing Gao . Building P-Poor Ni2P and P-Rich CoP3 Heterojunction Structure with Cation Vacancy for Enhanced Electrocatalytic Hydrazine and Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(6): 2306054-0. doi: 10.3866/PKU.WHXB202306054

    20. [20]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

Metrics
  • PDF Downloads(6)
  • Abstract views(1365)
  • HTML views(204)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return