Citation: Sang Ruoyu, Xu Xingpeng, Wang Qi, Fan Quli, Huang Wei. Near-Infrared-II Fluorescence Probes Based on Organic Small Molecules[J]. Acta Chimica Sinica, ;2020, 78(9): 901-915. doi: 10.6023/A20050190 shu

Near-Infrared-II Fluorescence Probes Based on Organic Small Molecules

  • Corresponding author: Wang Qi, iamqwang@njupt.edu.cn Fan Quli, iamqlfan@njupt.edu.cn
  • Received Date: 28 May 2020
    Available Online: 11 July 2016

    Fund Project: Project supported by the National Natural Science Foundation of China (Nos. 21602112, 21674048) and the Open Research Fund of State Key Laboratory of Bioelectronics, Southeast University (No. OPSKLB202006).the Open Research Fund of State Key Laboratory of Bioelectronics, Southeast University OPSKLB202006the National Natural Science Foundation of China 21674048the National Natural Science Foundation of China  21602112

Figures(22)

  • Fluorescence imaging plays an important role in the diagnosis and treatment of major diseases by virtue of its high sensitivity, strong specificity and excellent spatio-temporal resolution. However, traditional near-infrared-I (NIR-I, 700~900 nm) fluorescence imaging often encounters multiple concerns such as poor tissue penetration, which limits its clinical application. In recent years, near-infrared-II (NIR-II, 1000~1700 nm) fluorescence imaging has been proven to provide better imaging qualities, higher signal-to-noise ratio and deeper tissue penetration than those observed in the NIR-I window due to the diminished photon scattering and tissue auto-fluorescence. Among NIR-II fluorescent probes, organic small molecules are becoming research hotspots in this field due to their advantages of low toxicity, simple structure and fast metabolism. This review describes the recent progress in the design of organic small molecule NIR-II probes and the strategies for improving the fluorescence quantum yield. The application of small molecule NIR-II probes in activatable imaging, multimode imaging and theranostics are evaluated systematically. Current challenges and future perspectives in this emerging field are also prospected.
  • 加载中
    1. [1]

    2. [2]

      Zhu, S.; Tian, R.; Antaris, A. L.; Chen, X.; Dai, H. Adv. Mater. 2019, 31, 1900321.
       

    3. [3]

    4. [4]

    5. [5]

      (a) Naczynski, D. J.; Tan, M. C.; Zevon, M.; Wall, B.; Kohl, J.; Kulesa, A.; Chen, S.; Roth, C. M.; Riman, R. E.; Moghe, P. V. Nat. Commun. 2013, 4, 2199.(b) Kamimura, M.; Kanayama, N.; Tokuzen, K.; Soga, K.; Nagasaki, Y. Nanoscale 2011, 3, 3705.(c) Shao, W.; Chen, G.; Kuzmin, A.; Kutscher, H. L.; Pliss, A.; Ohulchanskyy, T. Y.; Prasad, P. N. J. Am. Chem. Soc. 2016, 138, 16192.

    6. [6]

      (a) Hong, G.; Diao, S.; Antaris, A. L.; Dai, H. Chem. Rev. 2015, 115, 10816.(b) Hong, G.; Lee, J. C.; Robinson, J. T.; Raaz, U.; Xie, L.; Huang, N. F.; Cooke, J. P.; Dai, H. Nat. Med. 2012, 18, 1841.(c) Robinson, J. T.; Hong, G.; Liang, Y.; Zhang, B.; Yaghi, O. K.; Dai, H. J. Am. Chem. Soc. 2012, 134, 10664.

    7. [7]

      Wu, C.; Huang, X.; Tang, Y.; Xiao, W.; Sun, L.; Shao, J.; Dong, X. Chem. Commun. 2019, 55, 790.  doi: 10.1039/C8CC07768A

    8. [8]

      Peng, F.; Setyawati, M. I.; Tee, J. K.; Ding, X.; Wang, J.; Nga, M. E.; Ho, H. K.; Leong, D. T. Nat. Nanotechnol. 2019, 14, 279.  doi: 10.1038/s41565-018-0356-z

    9. [9]

      Kenry; Duan, Y.; Liu, B. Adv. Mater. 2018, 30, 1802394.  doi: 10.1002/adma.201802394

    10. [10]

      Antaris, A. L.; Chen, H.; Cheng, K.; Sun, Y.; Hong, G.; Qu, C.; Diao, S.; Deng, Z.; Hu, X.; Zhang, B.; Zhang, X.; Yaghi, O. K.; Alamparambil, Z. R.; Hong, X.; Cheng, Z.; Dai, H. Nat. Mater. 2016, 15, 235.  doi: 10.1038/nmat4476

    11. [11]

      Antaris, A. L.; Chen, H.; Diao, S.; Ma, Z.; Zhang, Z.; Zhu, S.; Wang, J.; Lozano, A. X.; Fan, Q.; Chew, L.; Zhu, M.; Cheng, K.; Hong, X.; Dai, H.; Cheng, Z. Nat. Commun. 2017, 8, 15269.  doi: 10.1038/ncomms15269

    12. [12]

      Feng, Y.; Zhu, S.; Antaris, A. L.; Chen, H.; Xiao, Y.; Lu, X.; Jiang, L.; Diao, S.; Yu, K.; Wang, Y.; Herraiz, S.; Yue, J.; Hong, X.; Hong, G.; Cheng, Z.; Dai, H.; Hsueh, A. J. Chem. Sci. 2017, 8, 3703.  doi: 10.1039/C6SC04897H

    13. [13]

      Ding, F.; Li, C.; Xu, Y.; Li, J.; Li, H.; Yang, G.; Sun, Y. Adv. Healthc. Mater. 2018, 7, 1800973.  doi: 10.1002/adhm.201800973

    14. [14]

      Yi, W.; Zhou, H.; Li, A.; Yuan, Y.; Guo, Y.; Li, P.; Qi, B.; Xiao, Y.; Yu, A.; Hu, X. Biomater. Sci. 2019, 7, 1043.  doi: 10.1039/C8BM01440J

    15. [15]

      Sun, Y.; Qu, C.; Chen, H.; He, M.; Tang, C.; Shou, K.; Hong, S.; Yang, M.; Jiang, Y.; Ding, B.; Xiao, Y.; Xing, L.; Hong, X.; Cheng, Z. Chem. Sci. 2016, 7, 6203.  doi: 10.1039/C6SC01561A

    16. [16]

      Sun, Y.; Ding, M.; Zeng, X.; Xiao, Y.; Wu, H.; Zhou, H.; Ding, B.; Qu, C.; Hou, W.; Er-bu, A. G. A.; Zhang, Y.; Cheng, Z.; Hong, X. Chem. Sci. 2017, 8, 3489.  doi: 10.1039/C7SC00251C

    17. [17]

      Zeng, X.; Xue, L.; Chen, D.; Li, S.; Nong, J.; Wang, B.; Tang, L.; Li, Q.; Li, Y.; Deng, Z.; Hong, X.; Wu, M.; Xiao, Y. Chem. Commun. 2019, 55, 14287.  doi: 10.1039/C9CC07694H

    18. [18]

      Zhou, H.; Li, S.; Zeng, X.; Zhang, M.; Tang, L.; Li, Q.; Chen, D.; Meng, X.; Hong, X. Chin. Chem. Lett. 2020, 31, 1382.  doi: 10.1016/j.cclet.2020.04.030

    19. [19]

      Zhang, X.-D.; Wang, H.; Antaris, A. L.; Li, L.; Diao, S.; Ma, R.; Nguyen, A.; Hong, G.; Ma, Z.; Wang, J.; Zhu, S.; Castellano, J. M.; Wyss-Coray, T.; Liang, Y.; Luo, J.; Dai, H. Adv. Mater. 2016, 28, 6872.  doi: 10.1002/adma.201600706

    20. [20]

      Yang, Q.; Ma, Z.; Wang, H.; Zhou, B.; Zhu, S.; Zhong, Y.; Wang, J.; Wan, H.; Antaris, A.; Ma, R.; Zhang, X.; Yang, J.; Zhang, X.; Sun, H.; Liu, W.; Liang, Y.; Dai, H. Adv. Mater. 2017, 29, 1605497.  doi: 10.1002/adma.201605497

    21. [21]

      Yang, Q.; Hu, Z.; Zhu, S.; Ma, R.; Ma, H.; Ma, Z.; Wan, H.; Zhu, T.; Jiang, Z.; Liu, W.; Jiao, L.; Sun, H.; Liang, Y.; Dai, H. J. Am. Chem. Soc. 2018, 140, 1715.  doi: 10.1021/jacs.7b10334

    22. [22]

      Ma, H.; Liu, C.; Hu, Z.; Yu, P.; Zhu, X.; Ma, R.; Sun, Z.; Zhang, C.-H.; Sun, H.; Zhu, S.; Liang, Y. Chem. Mater. 2020, 32, 2061.  doi: 10.1021/acs.chemmater.9b05159

    23. [23]

      (a) Luo, J.; Xie, Z.; Lam, J. W. Y.; Cheng, L.; Chen, H.; Qiu, C.; Kwok, H. S.; Zhan, X.; Liu, Y.; Zhu, D.; Tang, B. Z. Chem. Commun. 2001, 1740.(b) Zhu, C.; Kwok, R. T. K.; Lam, J. W. Y.; Tang, B. Z. ACS Appl. Bio Mater. 2018, 1, 1768.(c) Gao, Y.; Zhang, H.; He, Z.; Fang, F.; Wang, C.; Zeng, K.; Gao, S.; Meng, F.; Luo, L.; Tang, B. Z. Mater. Chem. Front. 2020, 4, 1623.

    24. [24]

      Sheng, Z.; Guo, B.; Hu, D.; Xu, S.; Wu, W.; Liew, W. H.; Yao, K.; Jiang, J.; Liu, C.; Zheng, H.; Liu, B. Adv. Mater. 2018, 30, 1800766.  doi: 10.1002/adma.201800766

    25. [25]

      Lin, J.; Zeng, X.; Xiao, Y.; Tang, L.; Nong, J.; Liu, Y.; Zhou, H.; Ding, B.; Xu, F.; Tong, H.; Deng, Z.; Hong, X. Chem. Sci. 2019, 10, 1219.  doi: 10.1039/C8SC04363A

    26. [26]

      Liu, S.; Chen, C.; Li, Y.; Zhang, H.; Liu, J.; Wang, R.; Wong, S. T. H.; Lam, J. W. Y.; Ding, D.; Tang, B. Z. Adv. Funct. Mater. 2019, 30, 1908125.
       

    27. [27]

      Wu, W.; Yang, Y.; Yang, Y.; Yang, Y.; Zhang, K.; Guo, L.; Ge, H.; Chen, X.; Liu, J.; Feng, H. Small 2019, 15, 1805549.  doi: 10.1002/smll.201805549

    28. [28]

      Li, Q.; Ding, Q.; Li, Y.; Zeng, X.; Liu, Y.; Lu, S.; Zhou, H.; Wang, X.; Wu, J.; Meng, X.; Deng, Z.; Xiao, Y. Chem. Commun. 2020, 56, 3289.  doi: 10.1039/C9CC09865H

    29. [29]

      Li, Y.; Liu, Y.; Li, Q.; Zeng, X.; Tian, T.; Zhou, W.; Cui, Y.; Wang, X.; Cheng, X.; Ding, Q.; Wang, X.; Wu, J.; Deng, H.; Li, Y.; Meng, X.; Deng, Z.; Hong, X.; Xiao, Y. Chem. Sci. 2020, 11, 2621.  doi: 10.1039/C9SC06567A

    30. [30]

      Li, Y.; Cai, Z.; Liu, S.; Zhang, H.; Wong, S. T. H.; Lam, J. W. Y.; Kwok, R. T. K.; Qian, J.; Tang, B. Z. Nat. Commun. 2020, 11, 1255.  doi: 10.1038/s41467-020-15095-1

    31. [31]

      Starosolski, Z.; Bhavane, R.; Ghaghada, K. B.; Vasudevan, S. A.; Kaay, A.; Annapragada, A. PLOS ONE 2017, 12, 0187563.
       

    32. [32]

      Suo, Y.; Wu, F.; Xu, P.; Shi, H.; Wang, T.; Liu, H.; Cheng, Z. Adv. Healthc. Mater. 2019, 8, 1900974.  doi: 10.1002/adhm.201900974

    33. [33]

      Hu, Z.; Fang, C.; Li, B.; Zhang, Z.; Cao, C.; Cai, M.; Su, S.; Sun, X.; Shi, X.; Li, C.; Zhou, T.; Zhang, Y.; Chi, C.; He, P.; Xia, X.; Chen, Y.; Gambhir, S. S.; Cheng, Z.; Tian, J. Nat. Biomed. Eng. 2020, 4, 259.  doi: 10.1038/s41551-019-0494-0

    34. [34]

      Cosco, E. D.; Caram, J. R.; Bruns, O. T.; Franke, D.; Day, R. A.; Farr, E. P.; Bawendi, M. G.; Sletten, E. M. Angew. Chem. Int. Ed. 2017, 56, 13126.  doi: 10.1002/anie.201706974

    35. [35]

      Li, B.; Lu, L.; Zhao, M.; Lei, Z.; Zhang, F. Angew. Chem. Int. Ed. 2018, 57, 7483.  doi: 10.1002/anie.201801226

    36. [36]

      Sun, C.; Li, B.; Zhao, M.; Wang, S.; Lei, Z.; Lu, L.; Zhang, H.; Feng, L.; Dou, C.; Yin, D.; Xu, H.; Cheng, Y.; Zhang, F. J. Am. Chem. Soc. 2019, 141, 19221.  doi: 10.1021/jacs.9b10043

    37. [37]

      Ding, B.; Xiao, Y.; Zhou, H.; Zhang, X.; Qu, C.; Xu, F.; Deng, Z.; Cheng, Z.; Hong, X. J. Med. Chem. 2019, 62, 2049.  doi: 10.1021/acs.jmedchem.8b01682

    38. [38]

      Lei, Z.; Li, X.; Luo, X.; He, H.; Zheng, J.; Qian, X.; Yang, Y. Angew. Chem. Int. Ed. 2017, 56, 2979.  doi: 10.1002/anie.201612301

    39. [39]

      Sun, P.; Wu, Q.; Sun, X.; Miao, H.; Deng, W.; Zhang, W.; Fan, Q.; Huang, W. Chem. Commun. 2018, 54, 13395.  doi: 10.1039/C8CC08096H

    40. [40]

      Bai, L.; Sun, P.; Liu, Y.; Zhang, H.; Hu, W.; Zhang, W.; Liu, Z.; Fan, Q.; Li, L.; Huang, W. Chem. Commun. 2019, 55, 10920.  doi: 10.1039/C9CC03378E

    41. [41]

    42. [42]

      Tang, Y.; Pei, F.; Lu, X.; Fan, Q.; Huang, W. Adv. Opt. Mater. 2019, 7, 1900917.  doi: 10.1002/adom.201900917

    43. [43]

      Gao, P.; Pan, W.; Li, N.; Tang, B. Chem. Sci. 2019, 10, 6035.  doi: 10.1039/C9SC01652J

    44. [44]

      Jiao, C.; Liu, Y.; Lu, W.; Zhang, P.; Wang, Y. Chin. J. Org. Chem. 2019, 39, 591(in Chinese).
       

    45. [45]

      Lou, Z.; Li, P.; Han, K. Acc. Chem. Res. 2015, 48, 1358.  doi: 10.1021/acs.accounts.5b00009

    46. [46]

      Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R. L.; Torre, L. A.; Jemal, A. CA-Cancer J. Clin. 2018, 68, 394.  doi: 10.3322/caac.21492

    47. [47]

      Szabo, C.; Coletta, C.; Chao, C.; Módis, K.; Szczesny, B.; Papapetropoulos, A.; Hellmich, M. R. Proc. Natl. Acad. Sci. U. S. A. 2013, 201306241.
       

    48. [48]

      Xu, G.; Yan, Q. L.; Lv, X. G.; Zhu, Y.; Xin, K.; Shi, B.; Wang, R. C.; Chen, J.; Gao, W.; Shi, P.; Fan, C. H.; Zhao, C. C.; Tian, H. Angew. Chem. Int. Ed. 2018, 57, 3626.  doi: 10.1002/anie.201712528

    49. [49]

      Shi, B.; Yan, Q.; Tang, J.; Xin, K.; Zhang, J.; Zhu, Y.; Xu, G.; Wang, R.; Chen, J.; Gao, W.; Zhu, T.; Shi, J.; Fan, C.; Zhao, C.; Tian, H. Nano Lett. 2018, 18, 6411.  doi: 10.1021/acs.nanolett.8b02767

    50. [50]

      Shi, B.; Ren, N.; Gu, L.; Xu, G.; Wang, R.; Zhu, T.; Zhu, Y.; Fan, C.; Zhao, C.; Tian, H. Angew. Chem. Int. Ed. 2019, 58, 16826.  doi: 10.1002/anie.201909883

    51. [51]

    52. [52]

      Tang, Y.; Li, Y.; Wang, Z.; Pei, F.; Hu, X.; Ji, Y.; Li, X.; Zhao, H.; Hu, W.; Lu, X.; Fan, Q.; Huang, W. Chem. Commun. 2019, 55, 27.  doi: 10.1039/C8CC08413K

    53. [53]

      Feng, W.; Zhang, Y.; Li, Z.; Zhai, S.; Lv, W.; Liu, Z. Anal. Chem. 2019, 91, 15757.  doi: 10.1021/acs.analchem.9b04002

    54. [54]

      Li, D.; Wang, S.; Lei, Z.; Sun, C.; El-Toni, A. M.; Alhoshan, M. S.; Fan, Y.; Zhang, F. Anal. Chem. 2019, 91, 4771.  doi: 10.1021/acs.analchem.9b00317

    55. [55]

      Lei, Z.; Sun, C.; Pei, P.; Wang, S.; Li, D.; Zhang, X.; Zhang, F. Angew. Chem. Int. Ed. 2019, 58, 8166.  doi: 10.1002/anie.201904182

    56. [56]

      Yin, C.; Zhen, X.; Fan, Q.; Huang, W.; Pu, K. ACS Nano 2017, 11, 4174.
       

    57. [57]

      Tang, Y.; Li, Y.; Lu, X.; Hu, X.; Zhao, H.; Hu, W.; Lu, F.; Fan, Q.; Huang, W. Adv. Funct. Mater. 2019, 29, 1807376.  doi: 10.1002/adfm.201807376

    58. [58]

      Ge, X.; Lou, Y.; Su, L.; Chen, B.; Guo, Z.; Gao, S.; Zhang, W.; Chen, T.; Song, J.; Yang, H. Anal. Chem. 2020, 92, 6111.  doi: 10.1021/acs.analchem.0c00556

    59. [59]

      Wang, S.; Fan, Y.; Li, D.; Sun, C.; Lei, Z.; Lu, L.; Wang, T.; Zhang, F. Nat. Commun. 2019, 10, 1058.  doi: 10.1038/s41467-019-09043-x

    60. [60]

      Li, J.; Yuan, Y.; Zeng, G. S.; Li, X.; Yang, Z.; Li, X. Z.; Jiang, R. C.; Hu, W. B.; Sun, P. F.; Wang, Q.; Lu, X. M.; Fan, Q. L.; Huang, W. Polym. Chem. 2016, 7, 6890.  doi: 10.1039/C6PY01567K

    61. [61]

      Brown, J. M.; Wilson, W. R. Nat. Rev. Cancer 2004, 4, 437.  doi: 10.1038/nrc1367

    62. [62]

      Meng, X.; Zhang, J.; Sun, Z.; Zhou, L.; Deng, G.; Li, S.; Li, W.; Gong, P.; Cai, L. Theranostics 2018, 8, 6025.  doi: 10.7150/thno.26607

    63. [63]

      Ouyang, J.; Sun, L.; Zeng, Z.; Zeng, C.; Zeng, F.; Wu, S. Angew. Chem. Int. Ed. 2020, 59, 10111.  doi: 10.1002/anie.201913149

    64. [64]

      Dou, K.; Huang, W.; Xiang, Y.; Li, S.; Liu, Z. Anal. Chem. 2020, 92, 4177. s
       

    65. [65]

       

    66. [66]

      Feng, G.; Liu, B. Small 2016, 12, 6528.  doi: 10.1002/smll.201601637

    67. [67]

      Sun, Y.; Zeng, X.; Xiao, Y.; Liu, C.; Zhu, H.; Zhou, H.; Chen, Z.; Xu, F.; Wang, J.; Zhu, M.; Wu, J.; Tian, M.; Zhang, H.; Deng, Z.; Cheng, Z.; Hong, X. Chem. Sci. 2018, 9, 2092.  doi: 10.1039/C7SC04774F

    68. [68]

      Zhang, Q.; Zhou, H.; Chen, H.; Zhang, X.; He, S.; Ma, L.; Qu, C.; Fang, W.; Han, Y.; Wang, D.; Huang, Y.; Sun, Y.; Fan, Q.; Chen, Y.; Cheng, Z. Small 2019, 15, 1903382.  doi: 10.1002/smll.201903382

    69. [69]

      Zhou, H.; Yang, H.; Tang, L.; Wang, Y.; Li, Y.; Liu, N.; Zeng, X.; Yan, Y.; Wu, J.; Chen, S.; Xiao, L.; Yu, Y.; Deng, Z.; Deng, H.; Hong, X.; Xiao, Y. J. Mater. Chem. C 2019, 7, 9448.  doi: 10.1039/C9TC01929D

    70. [70]

      Chen, C.; Ou, H.; Liu, R.; Ding, D. Adv. Mater. 2019, 31, 1806331.
       

    71. [71]

      Cheng, K.; Chen, H.; Jenkins, C. H.; Zhang, G.; Zhao, W.; Zhang, Z.; Han, F.; Fung, J.; Yang, M.; Jiang, Y.; Xing, L.; Cheng, Z. ACS Nano 2017, 11, 12276.  doi: 10.1021/acsnano.7b05966

    72. [72]

      Zhang, R.; Xu, Y.; Zhang, Y.; Kim, H. S.; Sharma, A.; Gao, J.; Yang, G.; Kim, J. S.; Sun, Y. Chem. Sci. 2019, 10, 8348.  doi: 10.1039/C9SC03504D

    73. [73]

      Zhang, R.; Wang, Z.; Xu, L.; Xu, Y.; Lin, Y.; Zhang, Y.; Sun, Y.; Yang, G. Anal. Chem. 2019, 91, 12476.  doi: 10.1021/acs.analchem.9b03152

    74. [74]

      Wang, Q.; Xia, B.; Xu, J.; Niu, X.; Cai, J.; Shen, Q.; Wang, W.; Huang, W.; Fan, Q. Mater. Chem. Front. 2019, 3, 650.  doi: 10.1039/C9QM00036D

    75. [75]

      Qi, J.; Li, J.; Liu, R.; Li, Q.; Zhang, H.; Lam, J. W. Y.; Kwok, R. T. K.; Liu, D.; Ding, D.; Tang, B. Z. Chem 2019, 5, 2657.  doi: 10.1016/j.chempr.2019.07.015

    76. [76]

      (a) Wang, Q.; Zhang, P.; Xu, J.; Xia, B.; Tian, L.; Chen, J.; Li, J.; Lu, F.; Shen, Q.; Lu, X.; Huang, W.; Fan, Q. ACS Appl. Bio Mater. 2018, 1, 70.(b) Wang, Q.; Tian, L.; Xu, J.; Xia, B.; Li, J.; Lu, F.; Lu, X.; Wang, W.; Huang, W.; Fan, Q. Chem. Commun. 2018, 54, 10328.

    77. [77]

      (a) Dai, Y.; Su, J.; Wu, K.; Ma, W.; Wang, B.; Li, M.; Sun, P.; Shen, Q.; Wang, Q.; Fan, Q. ACS Appl. Mater. Interfaces 2019, 11, 10540.(b) Zou, J.; Xue, L.; Yang, N.; Ren, Y.; Fan, Z.; Wang, W.; Si, W.; Zhang, Y.; Huang, W.; Dong, X. Mater. Chem. Front. 2019, 3, 2143.

    78. [78]

      (a) Lu, X.; Chen, J.; Li, J.; Xia, B.; Xu, J.; Wang, Q.; Xie, C.; Fan, Q.; Huang, W. Biomater. Sci. 2019, 7, 3609.(b) Zhu, J.; Zou, J.; Zhang, Z.; Zhang, J.; Sun, Y.; Dong, X.; Zhang, Q. Mater. Chem. Front. 2019, 3, 1523.(c) Liu, B.; Wang, W.; Fan, J.; Long, Y.; Xiao, F.; Daniyal, M.; Tong, C.; Xie, Q.; Jian, Y.; Li, B.; Ma, X.; Wang, W. Biomaterials 2019, 217, 119301.

    79. [79]

      (a) Sun, T.; Chen, X.; Wang, X.; Liu, S.; Liu, J.; Xie, Z. Mater. Chem. Front. 2019, 3, 127.(b) Ou, C.; Zhang, Y.; Pan, D.; Ding, K.; Zhang, S.; Xu, W.; Wang, W.; Si, W.; Yang, Z.; Dong, X. Mater. Chem. Front. 2019, 3, 1786.(c) Fan, Y.-T.; Zhou, T.-J.; Cui, P.-F.; He, Y.-J.; Chang, X.; Xing, L.; Jiang, H.-L. Adv. Funct. Mater. 2019, 29, 1806708.

    80. [80]

      Zeng, X.; Xiao, Y.; Lin, J.; Li, S.; Zhou, H.; Nong, J.; Xu, G.; Wang, H.; Xu, F.; Wu, J.; Deng, Z.; Hong, X. Adv. Healthc. Mater. 2018, 7, 1800589.  doi: 10.1002/adhm.201800589

    81. [81]

      Alifu, N.; Zebibula, A.; Qi, J.; Zhang, H.; Sun, C.; Yu, X.; Xue, D.; Lam, J. W. Y.; Li, G.; Qian, J.; Tang, B. Z. ACS Nano 2018, 12, 11282.  doi: 10.1021/acsnano.8b05937

    82. [82]

      Li, T.; Li, C.; Ruan, Z.; Xu, P.; Yang, X.; Yuan, P.; Wang, Q.; Yan, L. ACS Nano 2019, 13, 3691.  doi: 10.1021/acsnano.9b00452

    83. [83]

      Gao, S.; Wei, G.; Zhang, S.; Zheng, B.; Xu, J.; Chen, G.; Li, M.; Song, S.; Fu, W.; Xiao, Z.; Lu, W. Nat. Commun. 2019, 10, 2206.  doi: 10.1038/s41467-019-10056-9

    84. [84]

      Yao, D.; Wang, Y.; Zou, R.; Bian, K.; Liu, P.; Shen, S.; Yang, W.; Zhang, B.; Wang, D. ACS Appl. Mater. Interfaces 2020, 12, 4276.  doi: 10.1021/acsami.9b20147

    85. [85]

      (a) Zhu, H.; Cheng, P.; Chen, P.; Pu, K. Biomater. Sci. 2018, 6, 746.(b) Xu, J.; Xia, B.; Niu, X.; Cai, J.; Han, Z.; Wang, Q.; Lu, X.; Fan, Q.; Huang, W. Dyes Pigments 2019, 170, 107664.

    86. [86]

      Wang, Q.; Dai, Y.; Xu, J.; Cai, J.; Niu, X.; Zhang, L.; Chen, R.; Shen, Q.; Huang, W.; Fan, Q. Adv. Funct. Mater. 2019, 29, 1901480.  doi: 10.1002/adfm.201901480

    87. [87]

      Wang, Q.; Xu, J.; Geng, R.; Cai, J.; Li, J.; Xie, C.; Tang, W.; Shen, Q.; Huang, W.; Fan, Q. Biomaterials 2020, 231, 119671.  doi: 10.1016/j.biomaterials.2019.119671

  • 加载中
    1. [1]

      Qi Wang Yicong Gao Feng Lu Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141

    2. [2]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    3. [3]

      Ruonan LiShijie LiangYunhua XuCuifen ZhangZheng TangBaiqiao LiuWeiwei Li . Chlorine-Substituted Double-Cable Conjugated Polymers with Near-Infrared Absorption for Low Energy Loss Single-Component Organic Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(8): 2307037-0. doi: 10.3866/PKU.WHXB202307037

    4. [4]

      Shiyang HeDandan ChuZhixin PangYuhang DuJiayi WangYuhong ChenYumeng SuJianhua QinXiangrong PanZhan ZhouJingguo LiLufang MaChaoliang Tan . Pt Single-Atom-Functionalized 2D Al-TCPP MOF Nanosheets for Enhanced Photodynamic Antimicrobial Therapy. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-0. doi: 10.1016/j.actphy.2025.100046

    5. [5]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    6. [6]

      Yanxi LIUMengjia XUHaonan CHENQuan LIUYuming ZHANG . A fluorescent-colorimetric probe for peroxynitrite-anion-imaging in living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1112-1122. doi: 10.11862/CJIC.20240423

    7. [7]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    8. [8]

      Xue WuYupeng LiuBingzhe WangLingyun LiZhenjian LiQingcheng WangQuansheng ChengGuichuan XingSongnan Qu . Rationally assembling different surface functionalized carbon dots for enhanced near-infrared tumor photothermal therapy. Acta Physico-Chimica Sinica, 2025, 41(9): 100109-0. doi: 10.1016/j.actphy.2025.100109

    9. [9]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    10. [10]

      Jiahui CHENTingting ZHENGXiuyun ZHANGWei LÜ . Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106

    11. [11]

      Xiaohang JINQi LIUJianping LANG . Room‑temperature solid‑state synthesis, structure, and third‑order nonlinear optical properties of phosphine‑ligand‑protected silver thiolate clusters. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1505-1512. doi: 10.11862/CJIC.20250125

    12. [12]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    13. [13]

      Lewang YuanYaoyao PengZong-Jie GuanYu Fang . Insights into the development of 2D covalent organic frameworks as photocatalysts in organic synthesis. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-0. doi: 10.1016/j.actphy.2025.100086

    14. [14]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    15. [15]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    16. [16]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    17. [17]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

    18. [18]

      Jiashuang Lu Xiaoyang Xu Youqing He Mingyue Wu Ruixin Shi Wenfang Yu Hang Lu Ji Liu Qingzeng Zhu . 生命健康中的有机硅高分子. University Chemistry, 2025, 40(8): 169-180. doi: 10.12461/PKU.DXHX202409143

    19. [19]

      Benhua Wang Chaoyi Yao Yiming Li Qing Liu Minhuan Lan Guipeng Yu Yiming Luo Xiangzhi Song . 一种基于香豆素氟离子荧光探针的合成、表征及性能测试——“科研反哺教学”在有机化学综合实验教学中的探索与实践. University Chemistry, 2025, 40(6): 201-209. doi: 10.12461/PKU.DXHX202408070

    20. [20]

      Anbang DuYuanfan WangZhihong WeiDongxu ZhangLi LiWeiqing YangQianlu SunLili ZhaoWeigao XuYuxi Tian . Photothermal Microscopy of Graphene Flakes with Different Thicknesses. Acta Physico-Chimica Sinica, 2024, 40(5): 2304027-0. doi: 10.3866/PKU.WHXB202304027

Metrics
  • PDF Downloads(336)
  • Abstract views(10645)
  • HTML views(3438)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return