Citation: Bai Yunping, Cui Chunming. Selective Hydroboration of Alkynes Enabled by a Silylene Iron(0) Dinitrogen Complex[J]. Acta Chimica Sinica, ;2020, 78(8): 763-766. doi: 10.6023/A20050163 shu

Selective Hydroboration of Alkynes Enabled by a Silylene Iron(0) Dinitrogen Complex

  • Corresponding author: Cui Chunming, cmcui@nankai.edu.cn
  • Received Date: 12 May 2020
    Available Online: 28 June 2020

    Fund Project: Project supported by the National Natural Science Foundation of China (No. 21632006)the National Natural Science Foundation of China 21632006

Figures(2)

  • Silylenes, isoelectronic with carbenes, are a kind of key intermediates in organosilicon chemistry. They possess a lone pair and an empty orbital on the silicon center, and thus could be used as donors and acceptors. Consequently, they could form complexes with various metals to support new structures and chemistry similar to both carbenes and phosphines. Iron complexes played important roles in the development of catalysts because of the inexpensive, nontoxic and sustainable characteristics.Catalytic hydroboration of alkynes presents the most atom-economic and straightforward protocol for the synthesis of vinylboranes which are indispensable intermediates for C—C coupling reactions. For the catalytic hydroboration of alkynes with iron catalysts, Enthaler's group developed the first iron catalytic system for hydroboration of alkynes by using Fe2(CO)9 (A, Chart 1) as the catalyst. Almost at the same time, Thomas's group reported the bis(imino)pyridine derived iron complexes (B) in combination with an activator for catalytic hydroboration of alkynes and alkenes. In 2017, Nishibayashi and co-workers employed an iron(Ⅱ) hydride complex (C) supported by a PNP pincer ligand for catalytic E-selective hydroboration of alkynes. In 2020, Findlater et al. reported the regioselective hydroboration of alkynes and alkenes with iron complexes supported by bis(2, 6-diisopropylaniline)acenaphthene ligands. However, these catalysts still suffered from limited substrate scope or harsh conditions. The development of highly selective catalysts for a wide substrate scope is still desirable. On the basis of our design on silylene ligands for iron chemistry, we are interested in the silylene-iron complexes for catalytic hydroboration reactions. In this paper, hydroborylation of terminal alkynes catalyzed by a neutral silylene-imine iron(0) dinitrogen complex D was studied. The reaction is highly regio- and stereoselective and almost exclusively gave E-hydroboration products. The optimized reaction conditions are as following: To a dried Schlenk tube were added complex D (0.006 g, 0.01 mmol), toluene (1.0 mL), alkyne (0.20 mmol), and catechol borane (0.02 g, 0.20 mmol). After the mixture was stirred at 80 ℃ for 24 h, it was cooled down to room temperature. The solvents were removed under vacuum and the residue was purified by flash chromatography on silica gel to afford the desired products.
  • 加载中
    1. [1]

      (a) Trinquier, G. J. Am. Chem. Soc. 1990, 112, 2130. (b) Apeloig, Y.; Pauncz, R.; Miriam, K.; West, R. Steiner, W.; Chapman, D. Organometallics 2003, 22, 3250. (c) Sasamori, T.; Tokitoh, N. In Encyclopedia of Inorganic Chemistry II, Ed.: King, R. B., John Wiley & Sons: Chichester, U.K., 2005, p. 1698.

    2. [2]

    3. [3]

    4. [4]

      (a) Troadec, T.; Prades, A.; Rodriguez, R.; Mirgalet, R.; Baceiredo, A.; Saffon-Merceron, N.; Branchadell, V.; Kato, T. Inorg. Chem. 2016, 55, 8234. (b) Iimura, T.; Akasaka, N.; Iwamoto, T. Organometallics 2016, 35, 4071. (c) Iimura, T.; Akasaka, N.; Kosai, T.; Iwamoto, T. Dalton Trans. 2017, 46, 8868.

    5. [5]

      (a) Cabeza, J. A.; García-Á lvarez, P.; González-Á lvarez, L. Chem. Commun. 2017, 53, 10275. (b) Ren, H.; Zhou, Y.-P.; Bai, Y.; Cui, C.; Driess, M. Chem. Eur. J. 2017, 23, 5663. (c) Brück, A.; Gallego, D.; Wang, W.; Irran, E.; Driess, M.; Hartwig, J. F. Angew. Chem. Int. Ed. 2012, 51, 11478. (d) Zhou, Y.-P.; Raoufmoghaddam, S.; Szilvási, T.; Driess, M. Angew. Chem. Int. Ed. 2016, 55, 12868. (e) Wang, Y.; Kostenko, A.; Yao, S.; Driess, M. J. Am. Chem. Soc. 2017, 139, 13499.

    6. [6]

      (a) Fürstner, A.; Krause, H.; Lehmann, C. W. Chem. Commun. 2001, 2372. (b) Khoo, S.; Cao, J.; Yang, M.-C.; Shan, Y.-L.; Su, M.-D.; So, C.-W. Chem. Eur. J. 2018, 24, 14329. (c) Zhang, M.; Liu, X.; Shi, C.; Ren, C.; Ding, Y.; Roesky, H. W. Z. Anorg. Allg. Chem. 2008, 634, 1755. (d) Gallego, D.; Brgck, A.; Irran, E.; Meier, F.; Kaupp, M.; Driess, M.; Hartwig, J. F. J. Am. Chem. Soc. 2013, 135, 15617. (e) Tan, G.; Enthaler, S.; Inoue, S.; Blom, B.; Driess, M. Angew. Chem. Int. Ed. 2015, 54, 2214. (f) Qi, X.; Sun, H.; Li, X.; Fuhr, O.; Fenske, D. Dalton Trans. 2018, 47, 2581. (g) Mo, Z.; Kostenko, A.; Zhou, Y.-P.; Yao, S.; Driess, M. Chem. Eur. J. 2018, 24, 14608. (h) Schmidt, M.; Blom, B.; Szilvási, T.; Schomä cker, R.; Driess, M. Eur. J. Inorg. Chem. 2017, 1284. (i) Someya, C. I.; Haberberger, M.; Wang, W.; Enthaler, S.; Inoue, S. Chem. Lett. 2013, 42, 286.

    7. [7]

      (a) Bracher, F.; Litz, T.; J. Prakt. Chem./Chem.-Ztg. 1996, 338, 386. (b) Brown, H. C.; Chen, J. J. Org. Chem. 1981, 46, 3978. (c) Brown, H. C.; Rao, B. S. J. Am. Chem. Soc. 1959, 81, 6423. (d) Crockett, M. P.; Tyrol, C. C.; Wong, A. S.; Li, B.; Byers, J. A. Org. Lett. 2018, 20, 5233. (e) Hartwig, J. F. Acc. Chem. Res. 2011, 45, 864. (e) Martin, R.; Buchwald, S. L. Acc. Chem. Res. 2008, 41, 1461. (f) Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457.

    8. [8]

      Haberberger, M.; Enthaler, S. Chem. Asian J. 2013, 8, 50.  doi: 10.1002/asia.201200931

    9. [9]

      Greenhalgh, M. D.; Thomas, S. P. Chem. Commun. 2013, 49, 11230.  doi: 10.1039/c3cc46727a

    10. [10]

      Nakajima, K.; Kato, T.; Nishibayashi, Y. Org. Lett. 2017, 19, 4323.  doi: 10.1021/acs.orglett.7b01995

    11. [11]

      Singh, A.; Shafiei-Haghighi, S.; Smith, C. R.; Unruh, D. K.; Findlater, M. Asian J. Org. Chem. 2020, 9, 416.  doi: 10.1002/ajoc.201900615

    12. [12]

      Bai, Y.; Zhang, J.; Cui, C. Chem. Commun. 2018, 54, 8124.  doi: 10.1039/C8CC03734E

    13. [13]

      (a) Docherty, J. H.; Peng, J.; Dominey, A. P.; Thomas, S. P. Nat. Chem. 2017, 9, 595. (b) Gorgas, N.; Alves, L. G.; Stöger, B.; Martins, A. M.; Veiros, L. F.; Kirchner, K. J. Am. Chem. Soc. 2017, 139, 8130.

  • 加载中
    1. [1]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    2. [2]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    3. [3]

      Shiyi WANGChaolong CHENXiangjian KONGLansun ZHENGLasheng LONG . Polynuclear lanthanide compound [Ce4Ce6(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 88-96. doi: 10.11862/CJIC.20240342

    4. [4]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    5. [5]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    6. [6]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    7. [7]

      Hong RAOYang HUYicong MAChunxin LÜWei ZHONGLihua DU . Synthesis and in vitro anticancer activity of phenanthroline-functionalized nitrogen heterocyclic carbene homo- and heterobimetallic silver/gold complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2429-2437. doi: 10.11862/CJIC.20240275

    8. [8]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    9. [9]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    10. [10]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    11. [11]

      Dongheng WANGSi LIShuangquan ZANG . Construction of chiral alkynyl silver chains and modulation of chiral optical properties. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 131-140. doi: 10.11862/CJIC.20240379

    12. [12]

      Daojuan Cheng Fang Fang . Exploration and Implementation of Science-Education Integration in Organic Chemistry Teaching for Pharmacy Majors: A Case Study on Nucleophilic Substitution Reactions of Alkyl Halides. University Chemistry, 2024, 39(11): 72-78. doi: 10.12461/PKU.DXHX202403105

    13. [13]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    14. [14]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    15. [15]

      Xiuyun Wang Jiashuo Cheng Yiming Wang Haoyu Wu Yan Su Yuzhuo Gao Xiaoyu Liu Mingyu Zhao Chunyan Wang Miao Cui Wenfeng Jiang . Improvement of Sodium Ferric Ethylenediaminetetraacetate (NaFeEDTA) Iron Supplement Preparation Experiment. University Chemistry, 2024, 39(2): 340-346. doi: 10.3866/PKU.DXHX202308067

    16. [16]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    17. [17]

      Tong Zhou Liyi Xie Chuyu Liu Xiyan Zheng Bao Li . Between Sobriety and Intoxication: The Fascinating Journey of Sauce-Flavored Latte. University Chemistry, 2024, 39(9): 55-58. doi: 10.12461/PKU.DXHX202312048

    18. [18]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    19. [19]

      Qingjun PANZhongliang GONGYuwu ZHONG . Advances in modulation of the excited states of photofunctional iron complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 45-58. doi: 10.11862/CJIC.20240365

    20. [20]

      Hongxia Yan Rui Wu Weixu Feng Yan Zhao Yi Yan . Innovation Inspired by Classical Chemistry: Luminescent Hyperbranched Polysiloxanes. University Chemistry, 2025, 40(4): 154-159. doi: 10.12461/PKU.DXHX202409010

Metrics
  • PDF Downloads(8)
  • Abstract views(1654)
  • HTML views(507)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return