Citation: Huang Qingming. Study on the Upconversion Luminescence Mechanism of Tegtragonal LiYF4: RE with Sublattice Energy Cluster Construction and Crystal Field Manipulation[J]. Acta Chimica Sinica, ;2020, 78(9): 968-979. doi: 10.6023/A20050154 shu

Study on the Upconversion Luminescence Mechanism of Tegtragonal LiYF4: RE with Sublattice Energy Cluster Construction and Crystal Field Manipulation

  • Corresponding author: Huang Qingming, qmhuang@fzu.edu.cn
  • Received Date: 9 May 2020
    Available Online: 8 June 2020

    Fund Project: Project supported by the Natural Science Foundation of Fujian Province (No. 2017J01688)the Natural Science Foundation of Fujian Province 2017J01688

Figures(10)

  • Lanthanide ions doped tetragonal LiYF4 has became an investigative focus of upconversion luminescence (UCL) materials for its well properties of multi-photon UCL and as a comparable matrix material with hexagonal NaYF4. While the cause for its well performance on short bands emission is still unrevealed. After the exploration of crystal structure characteristic of tetragonal LiYF4, a hexagonal circle sublattice structure of Y3+ with 0.3710 nm interval between adjacent Y3+ ions and larger than 0.5 nm interval between meta-position and para-position Y3+ ions were revealed. The energy transfer of rare earth ions are easy take place around the hexagonal circles or among the cluster of five adjacent trivalent ions. Base on the sublattice structure characteristic of tetragonal LiYF4, we have an idea to study UCL mechanism systematically of tetragonal LiYF4:RE by the construction of sublattice energy cluster 1M-xYb (M=Er, Ho, Tm) and the manipulation of crystal field symmetry by introducing different amount Yb3+ ions and Sc3+ or Hf4+ ions, respectively. Hydrothermal method was employed to prepare LiY0.98-xYbxEr0.02F4, LiY0.98-xYbxHo0.02F4, LiY0.995-xYbxTm0.005F4, LiY0.68-xYb0.3Er0.02ScxF4 and LiY0.68-xYb0.3Er0.02HfxF4 series samples. A typical preparation process demonstrate as follows, at first, (1-x) mmol Y(NO3)3 (0.2 mol/L), x mmol (x=0.2, 0.5, 0.7 and 0.9) Yb(NO3)3 (0.20 mol/L) and Er(NO3)3 (0.02 mmol) solution was dropwise added into 20 mL deionized (DI) water with 1 mmol EDTA to form a solution under vigorous stirring for 30 min. Secondly, 3.0 mL LiOH (1.0 mol/L) and 4.0 mL NH4HF2(1.0 mol/L) aqueous solution were dropwise added to the solution under thorough stirring for 30 min until the solution completely became a white emulsion, the pH value of the emulsion is 3~4. Finally, the white emulsion was slowly transferred into a 50 mL Teflon-lined autoclave, sealed and heated at 190℃ for 18 h. The final products were collected by centrifugation, and then washed with DI water several times. The collected samples were dried at 60℃ over night. X-ray powder diffraction (XRD) and Rietveld refinement method were employed to reveal the variation of crystal structure, field emission scanning electron microscopy (FESEM) and field emission transmission electron microscopy (FETEM) were employed to the analysis of crystal morphology and crystal structure. UCL performance was analyzed by Edinburgh fluorescence spectrophotometer FSP920. After investigation, we found excited energy levels distribution of different RE ions is diverse, and the level matching with Yb3+ are different too, it result in different luminescence quenching of energy cross relaxation, so the different sublattice energy clusters 1Er-2Yb, 1Ho-2Yb and 1Tm-4Yb of different active rare earth ions can be constructed for the best UCL performance. The cystal field symmetry of tetragonal LiYF4:Yb/Er were manipulated successfully by 6 mol% Sc3+ or 4 mol% Hf4+ doping, and UCL intensity were enhanced about 50% with 6 mol% Sc3+, while the UCL intensity were weaken after Hf4+ doping. After Sc3+ or Hf4+ doping, there are only three Yb3+ ions in the five trivalence ions cluster that can't realize two-photon cooperation upconversion synchronous electron population of 4F5/2 excited state level of Er3+ ions and 2G7/2 or 4Fo5/2 excited state level of Sc3+ or Hf4+ respevticely, and then Sc3+ and Hf4+ ions become a quenching center in the asymmetric crystal field that is conversed with them doped hexagonal NaYF4:Yb/Er that Sc3+ and Hf4+ ions were taken as energy storage ions and dramatically enhanced UCL performance. In this work, the UCL mechanism of sublattice energy cluster construction and crystal field manipulation were revealed that may be an inspiration for high efficient UC luminescence materials design and preparation.
  • 加载中
    1. [1]

      Auzel, F. Chem. Rev. 2004, 104, 139.  doi: 10.1021/cr020357g

    2. [2]

      Yao, W.; Tian, Q.; Wu, W. Adv. Opt. Mater. 2019, 7, 1801171.  doi: 10.1002/adom.201801171

    3. [3]

      Ju, D.; Song, F.; Zhang, J.; Ming, C.; Song, F.; Khan, A.; Zhou, A.; Wang, X.; Liu, L. J. Alloys Compd. 2019, 770, 1181.  doi: 10.1016/j.jallcom.2018.08.227

    4. [4]

      Han, Y.; Li, H.; Wang, Y.; Pan, Y.; Huang, L.; Song, F.; Huang, W. Sci. Rep. 2017, 7, 1320.  doi: 10.1038/s41598-017-01611-9

    5. [5]

      Wiesholler, L. M.; Hirsch, T. Opt. Mater. 2018, 80, 253.  doi: 10.1016/j.optmat.2018.04.015

    6. [6]

      Xiong, L.; Fan, Y.; Zhang, F. Acta Chim. Sinica 2019, 77, 1239(in Chinese).
       

    7. [7]

      Xu, J.; Gulzar, A.; Yang, P.; Bi, H.; Yang, D.; Gai, S.; He, F.; Lin, J.; Xing, B.; Jin, D. Coord. Chem. Rev. 2019, 381, 104.  doi: 10.1016/j.ccr.2018.11.014

    8. [8]

      Li, H.; Tan, M.; Wang, X.; Li, F.; Zhang, Y.; Zhao, L.; Yang, C.; Chen, G. J. Am. Chem. Soc. 2020, 142, 2023.  doi: 10.1021/jacs.9b11641

    9. [9]

      Wei, Y.; Yang, X.; Ma, Y.; Wang, S.; Yuan, Q. Chin. J. Chem. 2016, 34, 558.  doi: 10.1002/cjoc.201500755

    10. [10]

      Qiu, H.; Tan, M.; Ohulchanskyy, T. Y.; Lovell, J. F.; Chen, G. Nanomaterials 2018, 8, 344.  doi: 10.3390/nano8050344

    11. [11]

      Lu, F.; Yang, L.; Ding, Y.; Zhu, J.-J. Adv. Funct. Mater. 2016, 26, 4778.  doi: 10.1002/adfm.201600464

    12. [12]

      Lee, G.; Park, Y. I. Nanomaterials 2018, 8, 511.  doi: 10.3390/nano8070511

    13. [13]

      Duan, C.; Liang, L.; Li, L.; Zhang, R.; Xu, Z. P. J. Mater. Chem. B 2018, 6, 192.  doi: 10.1039/C7TB02527K

    14. [14]

      Day, J.; Senthilarasu, S.; Mallick, T. K. Renewable Energy 2019, 132, 186.  doi: 10.1016/j.renene.2018.07.101

    15. [15]

      Qin, X.; Xu, J.; Wu, Y.; Liu, X. ACS Cent. Sci. 2019, 5, 29.  doi: 10.1021/acscentsci.8b00827

    16. [16]

      Chen, Y.; Zou, L.; Zhang, X.; Huang, Q.; Yu, H. ChemistrySelect 2019, 4, 4262.  doi: 10.1002/slct.201900125

    17. [17]

      Lv, Y.; Yue, L.; Li, Q.; Shao, B.; Zhao, S.; Wang, H.; Wu, S.; Wang, Z. Dalton Trans. 2018, 47, 1666.  doi: 10.1039/C7DT04279E

    18. [18]

      Ullah, S.; Hazra, C.; Ferreira-Neto, E. P.; Silva, T. C.; Rodrigues-Filho, U. P.; Ribeiro, S. J. L. Crystengcomm 2017, 19, 3465.  doi: 10.1039/C7CE00809K

    19. [19]

      Gao, W.; Tian, B.; Zhang, W.; Zhang, X.; Wu, Y.; Lu, G. Appl. Catal. B-Environ. 2019, 257, 117908.  doi: 10.1016/j.apcatb.2019.117908

    20. [20]

      Boppella, R.; Mota, F. M.; Lim, J. W.; Kochuveedu, S. T.; Ahn, S.; Lee, J.; Kawaguchi, D.; Tanaka, K.; Kim, D. H. ACS Appl. Energy Mater. 2019, 2, 3780.
       

    21. [21]

      Borges, M. E.; Sierra, M.; Mendez-Ramos, J.; Acosta-Mora, P.; Ruiz-Morales, J. C.; Esparza, P. Sol. Energy Mater. Sol. Cells 2016, 155, 194.  doi: 10.1016/j.solmat.2016.06.010

    22. [22]

      Kakavelakis, G.; Petridis, K.; Kymakis, E. J. Mater. Chem. A 2017, 5, 21604.  doi: 10.1039/C7TA05428A

    23. [23]

      Chen, X.; Xu, W.; Song, H.; Chen, C.; Xia, H.; Zhu, Y.; Zhou, D.; Cui, S.; Dai, Q.; Zhang, J. ACS Appl. Mater. Interfaces 2016, 8, 9071.  doi: 10.1021/acsami.5b12528

    24. [24]

      Schulze, T. F.; Schmidt, T. W. Energy Environ. Sci. 2015, 8, 103.  doi: 10.1039/C4EE02481H

    25. [25]

      Goldschmidt, J. C.; Fischer, S. Adv. Opt. Mater. 2015, 3, 510.  doi: 10.1002/adom.201500024

    26. [26]

      Lei, P.; An, R.; Zhai, X.; Yao, S.; Dong, L.; Xu, X.; Du, K.; Zhang, M.; Feng, J.; Zhang, H. J. Mater. Chem. C 2017, 5, 9659.  doi: 10.1039/C7TC03122J

    27. [27]

      Chen, D. Q.; Xu, M.; Huang, P. Sensor. Actuat. B-Chem. 2016, 231, 576.  doi: 10.1016/j.snb.2016.03.070

    28. [28]

      Reddy, K. L.; Balaji, R.; Kumar, A.; Krishnan, V. Small 2018, 14,1.
       

    29. [29]

      Gulzar, A.; Xu, J.; Yang, P.; He, F.; Xu, L. Nanoscale 2017, 9, 12248.  doi: 10.1039/C7NR01836C

    30. [30]

      Cheng, C.; Xu, Y.; Liu, S.; Liu, Y.; Wang, X.; Wang, J.; De, G. J. Mater. Chem. C 2019, 7, 8898.  doi: 10.1039/C9TC01323G

    31. [31]

      Judd, B. R. Phys. Rev. 1962, 127, 750.  doi: 10.1103/PhysRev.127.750

    32. [32]

      Huang, Q.; Yu, J.; Ma, E.; Lin, K. J. Phys. Chem. C 2010, 114, 4719.  doi: 10.1021/jp908645h

    33. [33]

      Guo, Y.; Zeng, H.; Jiang, Y.; Qi, G.; Chen, G.; Chen, J.; Sun, L. J. Lumin. 2019, 214, 116524.  doi: 10.1016/j.jlumin.2019.116524

    34. [34]

      Lin, H.; Xu, D.; Teng, D.; Yang, S.; Zhang, Y. Opt. Mater. 2015, 45, 229.  doi: 10.1016/j.optmat.2015.03.044

    35. [35]

      Huang, Q.; Yu, H.; Ma, E.; Zhang, X.; Cao, W.; Yang, C.; Yu, J. Inorg. Chem. 2015, 54, 2643.  doi: 10.1021/ic5027976

    36. [36]

      Liu, Y.; Tu, D.; Zhu, H.; Li, R.; Luo, W.; Chen, X. Adv. Mater. 2010, 22, 3266.  doi: 10.1002/adma.201000128

    37. [37]

      Zhao, J.; Chen, X.; Chen, B.; Luo, X.; Sun, T.; Zhang, W.; Wang, C.; Lin, J.; Su, D.; Qiao, X.; Wang, F. Adv. Funct. Mater. 2019, 29, 1903295.  doi: 10.1002/adfm.201903295

    38. [38]

      Wang, F.; Deng, R. R.; Wang, J.; Wang, Q. X.; Han, Y.; Zhu, H. M.; Chen, X. Y.; Liu, X. G. Nat. Mater. 2011, 10, 968.  doi: 10.1038/nmat3149

    39. [39]

      Goncalves, J. M.; Guillot, P.; Caiut, J. M. A.; Caillier, B. J. Mater. Sci.-Mater. El. 2019, 30, 16724.  doi: 10.1007/s10854-019-01011-x

    40. [40]

      Xu, W.; Xu, S.; Zhu, Y.; Liu, T.; Bai, X.; Dong, B.; Xu, L.; Song, H. Nanoscale 2012, 4, 6971.  doi: 10.1039/c2nr32377j

    41. [41]

      Zhang, W. H.; Ding, F.; Chou, S. Y. Adv. Mater. 2012, 24, 236.
       

    42. [42]

      Zhao, J.; Jin, D.; Schartner, E. P.; Lu, Y.; Liu, Y.; Zvyagin, A. V.; Zhang, L.; Dawes, J. M.; Xi, P.; Piper, J. A.; Goldys, E. M.; Monro, T. M. Nat. Nanotechnol. 2013, 8, 729.  doi: 10.1038/nnano.2013.171

    43. [43]

      Liu, M.; Wu, Q.; Shi, H.; An, Z.; Huang, W. Acta Chim. Sinica 2018, 76, 246(in Chinese).
       

    44. [44]

      Wang, J.; Deng, R.; MacDonald, M. A.; Chen, B.; Yuan, J.; Wang, F.; Chi, D.; Hor, T. S. A.; Zhang, P.; Liu, G.; Han, Y.; Liu, X. Nat. Mater. 2014, 13, 157.  doi: 10.1038/nmat3804

    45. [45]

      Huang, Q. J. Alloys Compd. 2020, 821, 153544.  doi: 10.1016/j.jallcom.2019.153544

    46. [46]

      Purohit, B.; Guyot, Y.; Amans, D.; Joubert, M.-F.; Mahler, B.; Mishra, S.; Daniele, S.; Dujardin, C.; Ledoux, G. ACS Photonics 2019, 6, 3126.  doi: 10.1021/acsphotonics.9b01151

    47. [47]

      Shin, J.; Kyhm, J.-H.; Hong, A. R.; Song, J. D.; Lee, K.; Ko, H.; Jang, H. S. Chem. Mater. 2018, 30, 8457.  doi: 10.1021/acs.chemmater.8b02497

    48. [48]

      Huang, Q.; Yu, H.; Zhang, X.; Cao, W.; Yu, J. Acta Chim. Sinica 2016, 74, 191(in Chinese).
       

    49. [49]

      Fisher, B. R.; Eisler, H. J.; Stott, N. E.; Bawendi, M. G. J. Phys. Chem. B 2004, 108, 143.  doi: 10.1021/jp035756+

    50. [50]

      Ofelt, G. S. J. Chem. Phys. 1962, 37, 511.  doi: 10.1063/1.1701366

  • 加载中
    1. [1]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    2. [2]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    3. [3]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

    4. [4]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    5. [5]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    6. [6]

      Shiyi WANGChaolong CHENXiangjian KONGLansun ZHENGLasheng LONG . Polynuclear lanthanide compound [Ce4Ce6(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 88-96. doi: 10.11862/CJIC.20240342

    7. [7]

      Chunling QinShuang ChenHassanien GomaaMohamed A. ShenashenSherif A. El-SaftyQian LiuCuihua AnXijun LiuQibo DengNing Hu . Regulating HER and OER Performances of 2D Materials by the External Physical Fields. Acta Physico-Chimica Sinica, 2024, 40(9): 2307059-0. doi: 10.3866/PKU.WHXB202307059

    8. [8]

      Linfeng XiaoWanlu RenShishi ShenMengshan ChenRunhua LiaoYingtang ZhouXibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036

    9. [9]

      Yajie LiBin ChenYiping WangHui XingWei ZhaoGeng ZhangSiqi Shi . Inhibiting Dendrite Growth by Customizing Electrolyte or Separator to Achieve Anisotropic Lithium-Ion Transport: A Phase-Field Study. Acta Physico-Chimica Sinica, 2024, 40(3): 2305053-0. doi: 10.3866/PKU.WHXB202305053

    10. [10]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    11. [11]

      Hui WangAbdelkader LabidiMenghan RenFeroz ShaikChuanyi Wang . Recent Progress of Microstructure-Regulated g-C3N4 in Photocatalytic NO Conversion: The Pivotal Roles of Adsorption/Activation Sites. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-0. doi: 10.1016/j.actphy.2024.100039

    12. [12]

      Jinrong Bao Jinglin Zhang Wenxian Li Xiaowei Zhu . 苯甲酸稀土配合物的制备及性能表征——基于应用化学专业人才培养的综合化学实验案例分析. University Chemistry, 2025, 40(8): 218-224. doi: 10.12461/PKU.DXHX202409142

    13. [13]

      Pei LiYuenan ZhengZhankai LiuAn-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 2406012-0. doi: 10.3866/PKU.WHXB202406012

    14. [14]

      Xuyu WANGXinran XIEDengke CAO . Photoreaction characteristics and luminescence modulation in phosphine-anthracene-based Au(Ⅰ) and Ir(Ⅲ) complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1513-1522. doi: 10.11862/CJIC.20250113

    15. [15]

      Yinyin Qian Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051

    16. [16]

      Qing LiGuangxun ZhangYuxia XuYangyang SunHuan Pang . P-Regulated Hierarchical Structure Ni2P Assemblies toward Efficient Electrochemical Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(9): 2308045-0. doi: 10.3866/PKU.WHXB202308045

    17. [17]

      Jingzhuo TianChaohong GuanHaobin HuEnzhou LiuDongyuan Yang . Waste plastics promoted photocatalytic H2 evolution over S-scheme NiCr2O4/twinned-Cd0.5Zn0.5S homo-heterojunction. Acta Physico-Chimica Sinica, 2025, 41(6): 100068-0. doi: 10.1016/j.actphy.2025.100068

    18. [18]

      Qilin YUYifei XUPengjun ZHANGShuwei HAOChongqiang ZHUChunhui YANG . Effect of regulating K+/Na+ ratio on the structure and optical properties of double perovskite Cs2NaBiCl6: Mn2+. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1058-1067. doi: 10.11862/CJIC.20240418

    19. [19]

      Yajin LiHuimin LiuLan MaJiaxiong LiuDehua He . Photothermal Synthesis of Glycerol Carbonate via Glycerol Carbonylation with CO2 over Au/Co3O4-ZnO Catalyst. Acta Physico-Chimica Sinica, 2024, 40(9): 2308005-0. doi: 10.3866/PKU.WHXB202308005

    20. [20]

      Yuxin CHENYanni LINGYuqing YAOKeyi WANGLinna LIXin ZHANGQin WANGHongdao LIWenmin WANG . Construction, structures, and interaction with DNA of two Sm4 complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1141-1150. doi: 10.11862/CJIC.20240258

Metrics
  • PDF Downloads(6)
  • Abstract views(4897)
  • HTML views(633)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return