Citation: Qi Ye, Ren Shuangsong, Che Ying, Ye Junwei, Ning Guiling. Research Progress of Metal-Organic Frameworks Based Antibacterial Materials[J]. Acta Chimica Sinica, ;2020, 78(7): 613-624. doi: 10.6023/A20040126 shu

Research Progress of Metal-Organic Frameworks Based Antibacterial Materials

  • Corresponding author: Ye Junwei, junweiye@dlut.edu.cn Ning Guiling, ninggl@dlut.edu.cn
  • Received Date: 28 April 2020
    Available Online: 28 May 2020

    Fund Project: the National Natural Science Foundation of China U1607101the National Natural Science Foundation of China U1808210the Fundamental Research Funds for the Central Universities DUT20LK37Project supported by the National Natural Science Foundation of China (Nos. U1808210, U1607101) and the Fundamental Research Funds for the Central Universities (No. DUT20LK37)

Figures(5)

  • With the accelerating process of industrialization and urbanization, as well as the increasing proportion of the elderly in the world's population, we are facing more complex health threats related to bacterial infection. While the vast majority of the bacteria in the body are rendered harmless by the protective effects of the immune system, the continued abuse and misuse of antibiotics has accelerated the spread of antibiotic-resistant bacterial strains and has resulted in substantial new challenges with respect to modern-day antibiotic-based treatments. Therefore, intelligent design of new antibacterial modalities to be used for treating human and livestock diseases is an extremely urgent priority for researchers in the fields of chemistry, chemical engineering, materials and biomedical sciences. Toward this end, the most intriguing of the new developments are metal-organic frameworks (MOFs). MOFs are versatile crystalline porous lattices of organic ligands and metal ion/clusters that formed by self-assembly via coordination bonds. Due to their unique characteristics, including relatively straight forward and simple methods for synthesis, large surface areas, novel and diverse structures, and adjustable porosity, MOFs not only play strong roles with respect to novel methods for gas storage and separation, they may also be utilized in unique applications associated with sensors mechanisms and catalysis. These features contribute to our current understanding of MOFs as promising candidates for the development of pharmaceutical and specifically antibacterial applications. In this review, antibacterial mechanisms, and the development of resistance to current antibiotic strategies are summarized and discussed. The main mechanisms by which bacteria show resistance to antibiotics include altered metabolic pathways, regulation of target sites, and inactivation, modification, and/or reduction in the capacity to accumulate antibacterial drugs. We consider recent progress on the development of MOFs, including the use of specific metal centers and ligands, metal nanoparticles, and drug-encapsulation, all of which have important applications with respect to antibacterial activities, and wound healing. Finally, the challenges and prospects of MOF-based antibacterial materials are discussed, including critical findings, which will help toward the development of the next generation antibacterial MOFs for human use.
  • 加载中
    1. [1]

      Tan, L.; Li, J.; Liu, X.; Cui, Z.; Yang, X.; Yeung, K. W. K.; Pan, H.; Zheng, Y.; Wang, X.; Wu, S. Small 2018, 14, 1703197.  doi: 10.1002/smll.201703197

    2. [2]

      Rtimi, S.; Dionysiou, D. D.; Pillai, S. C.; Kiwi, J. Appl. Catal., B 2019, 240, 291.  doi: 10.1016/j.apcatb.2018.07.025

    3. [3]

      Alseth, E. O.; Pursey, E.; Lujan, A. M.; McLeod, I.; Rollie, C.; Westra, E. R. Nature 2019, 574, 549.  doi: 10.1038/s41586-019-1662-9

    4. [4]

      Tang, S.; Zheng, J. Adv. Healthcare Mater. 2018, 7, 1701503.  doi: 10.1002/adhm.201701503

    5. [5]

      Qi, Y.; Ye, J.; Zhang, S.; Tian, Q.; Xu, N.; Tian, P.; Ning, G. J. Alloys Compd. 2019, 782, 780.  doi: 10.1016/j.jallcom.2018.12.111

    6. [6]

      Chai, Z.; Tian, Q.; Ye, J.; Zhang, S.; Wang, G.; Qi, Y.; Che, Y.; Ning, G. J. Mater. Sci. 2020, 55, 4408.  doi: 10.1007/s10853-019-04312-y

    7. [7]

      Ye, J.; Cheng, H.; Li, H.; Yang, Y.; Zhang, S.; Rauf, A.; Zhao, Q.; Ning, G. J. Colloid Interface Sci. 2017, 504, 448.  doi: 10.1016/j.jcis.2017.05.111

    8. [8]

      Peng, K.; Ding, W.; Tu, W.; Hu, J.; Liu, C.; Yang, J. Acta Chim. Sinica 2016, 74, 713.  doi: 10.11862/CJIC.2016.081

    9. [9]

      Hook, A. L.; Chang, C.-Y.; Yang, J.; Atkinson, S.; Langer, R.; Anderson, D. G.; Davies, M. C.; Williams, P.; Alexander, M. R. Adv. Mater. 2013, 25, 2542.  doi: 10.1002/adma.201204936

    10. [10]

      Wang, K.; He, J. Acta Chim. Sinica 2018, 76, 807.
       

    11. [11]

      Furukawa, H.; Cordova, K. E.; O'Keeffe, M.; Yaghi, O. M. Science 2013, 341, 974.

    12. [12]

      Rowsell, J. L. C.; Yaghi, O. M. Angew. Chem., Int. Ed. 2005, 44, 4670.  doi: 10.1002/anie.200462786

    13. [13]

      Zhang, X.; Wang, X.; Fan, W.; Sun, D. Chin. J. Chem. 2020, 38, 509.  doi: 10.1002/cjoc.201900493

    14. [14]

      Wang, X.; Zhang, Y.; Chang, Z.; Huang, H.; Liu, X.-T.; Xu, J.; Bu, X.-H. Chin. J. Chem. 2019, 37, 871.  doi: 10.1002/cjoc.201900247

    15. [15]

      Schoedel, A.; Li, M.; Li, D.; O'Keeffe, M.; Yaghi, O. M. Chem. Rev. 2016, 116, 12466.  doi: 10.1021/acs.chemrev.6b00346

    16. [16]

      Yaghi, O. M.; Li, H. L.; Davis, C.; Richardson, D.; Groy, T. L. Acc. Chem. Res. 1998, 31, 474.  doi: 10.1021/ar970151f

    17. [17]

      Zeng, J.; Wang, X.; Zhang, X.; Zhuo, R. Acta Chim. Sinica 2019, 77, 1156.
       

    18. [18]

      Cao, L.; Wang, T.; Wang, C. Chin. J. Chem. 2018, 36, 754.  doi: 10.1002/cjoc.201800144

    19. [19]

      Gao, B.; Zhou, J.; Wang, H.; Zhang, G.; He, J.; Xu, Q.; Li, N.; Chen, D.; Li, H.; Lu, J. Chin. J. Chem. 2019, 37, 148.  doi: 10.1002/cjoc.201800440

    20. [20]

      Guo, X.; Chen, X.; Su, D.; Liang, C. Acta Chim. Sinica 2018, 76, 22.  doi: 10.3866/PKU.WHXB201706302

    21. [21]

      Wu, Z.; Shi, Y.; Li, C.; Niu, D.; Chu, Q.; Xiong, W.; Li, X. Acta Chim. Sinica 2019, 77, 758.
       

    22. [22]

      Luo, Y.; Li, J.; Liu, X.; Tan, L.; Cui, Z.; Feng, X.; Yang, X.; Liang, Y.; Li, Z.; Zhu, S.; Zheng, Y.; Yeung, K. W. K.; Yang, C.; Wang, X.; Wu, S. ACS Cent. Sci. 2019, 5, 1591.  doi: 10.1021/acscentsci.9b00639

    23. [23]

      Yang, Y.; Deng, Y.; Huang, J.; Fan, X.; Cheng, C.; Nie, C.; Ma, L.; Zhao, W.; Zhao, C. Adv. Funct. Mater. 2019, 29, 1900143.  doi: 10.1002/adfm.201900143

    24. [24]

      Yao, X.; Zhu, G.; Zhu, P.; Ma, J.; Chen, W.; Liu, Z.; Kong, T. Adv. Funct. Mater. 2020, 30, 1909389.  doi: 10.1002/adfm.201909389

    25. [25]

      Nasrabadi, M.; Ghasemzadeh, M. A.; Monfared, M. R. Z. New J. Chem. 2019, 43, 16033.  doi: 10.1039/C9NJ03216A

    26. [26]

      Chen, M.; Long, Z.; Dong, R.; Wang, L.; Zhang, J.; Li, S.; Zhao, X.; Hou, X.; Shao, H.; Jiang, X. Small 2020, 16, 1906240.  doi: 10.1002/smll.201906240

    27. [27]

      Alexander, F. Br. J. Exp. Pathol. 1929, 10, 226.

    28. [28]

      Lacombe, S.; Rougon-Cardoso, A.; Sherwood, E.; Peeters, N.; Dahlbeck, D.; van Esse, H. P.; Smoker, M.; Rallapalli, G.; Thomma, B. P. H. J.; Staskawicz, B.; Jones, J. D. G.; Zipfel, C. Nat. Biotechnol. 2010, 28, 365.  doi: 10.1038/nbt.1613

    29. [29]

      Jiao, Y.; Zhang, X. Acta Chim. Sinica 2018, 76, 659.  doi: 10.3969/j.issn.0253-2409.2018.06.003

    30. [30]

      Zhang, Q.-Q.; Ying, G.-G.; Pan, C.-G.; Liu, Y.-S.; Zhao, J.-L. Environ. Sci. Technol. 2015, 49, 6772.  doi: 10.1021/acs.est.5b00729

    31. [31]

      Molton, J. S.; Tambyah, P. A.; Ang, B. S. P.; Ling, M. L.; Fisher, D. A. Clin. Infect. Dis. 2013, 56, 1310.  doi: 10.1093/cid/cit020

    32. [32]

      Magiorakos, A. P.; Srinivasan, A.; Carey, R. B.; Carmeli, Y.; Falagas, M. E.; Giske, C. G.; Harbarth, S.; Hindler, J. F.; Kahlmeter, G.; Olsson-Liljequist, B.; Paterson, D. L.; Rice, L. B.; Stelling, J.; Struelens, M. J.; Vatopoulos, A.; Weber, J. T.; Monnet, D. L. Clin. Microbiol. Infect. 2012, 18, 268.  doi: 10.1111/j.1469-0691.2011.03570.x

    33. [33]

      Luria, S. E.; Delbrück, M. Genetics 1943, 28, 491.

    34. [34]

      Long, H.; Miller, S. F.; Strauss, C.; Zhao, C.; Cheng, L.; Ye, Z.; Griffin, K.; Te, R.; Lee, H.; Chen, C.-C.; Lynch, M. PNAS 2016, 113, E2498.  doi: 10.1073/pnas.1601208113

    35. [35]

      Gutierrez, A.; Laureti, L.; Crussard, S.; Abida, H.; Rodriguez-Rojas, A.; Blazquez, J.; Baharoglu, Z.; Mazel, D.; Darfeuille, F.; Vogel, J.; Matic, I. Nat. Commun. 2013, 4, 1610.  doi: 10.1038/ncomms2607

    36. [36]

      Bjedov, I.; Tenaillon, O.; Gerard, B.; Souza, V.; Denamur, E.; Radman, M.; Taddei, F.; Matic, I. Science 2003, 300, 1404.  doi: 10.1126/science.1082240

    37. [37]

      Yun, B.-R.; Malik, A.; Kim, S. B. Gene 2020, 733, 144379.  doi: 10.1016/j.gene.2020.144379

    38. [38]

      Tabashnik, B. E.; Huang, F.; Ghimire, M. N.; Leonard, B. R.; Siegfried, B. D.; Rangasamy, M.; Yang, Y.; Wu, Y.; Gahan, L. J.; Heckel, D. G.; Bravo, A.; Soberon, M. Nat. Biotechnol. 2011, 29, 1128.  doi: 10.1038/nbt.1988

    39. [39]

      Dey, B.; Dey, R. J.; Cheung, L. S.; Pokkali, S.; Guo, H.; Lee, J.-H.; Bishai, W. R. Nat. Med. 2015, 21, 401.  doi: 10.1038/nm.3813

    40. [40]

      Thaker, M. N.; Wang, W.; Spanogiannopoulos, P.; Waglechner, N.; King, A. M.; Medina, R.; Wright, G. D. Nat. Biotechnol. 2013, 31, 922.  doi: 10.1038/nbt.2685

    41. [41]

      Dodd, M. C.; Kohler, H.-P. E.; Von Gunten, U. Environ. Sci. Technol. 2009, 43, 2498.

    42. [42]

      Kim, J.; Pitts, B.; Stewart, P. S.; Camper, A.; Yoon, J. Antimicrob. Agents Chemother. 2008, 52, 1446.  doi: 10.1128/AAC.00054-07

    43. [43]

      Yan, D.; Wu, X.; Pei, J.; Wu, C.; Wang, X.; Zhao, H. Ceram. Int. 2020, 46, 696.  doi: 10.1016/j.ceramint.2019.09.022

    44. [44]

      Hu, X. N.; Zhao, Y. Y.; Hu, Z. J.; Saran, A.; Hou, S.; Wen, T.; Liu, W. Q.; Ji, Y. L.; Jiang, X. Y.; Wu, X. C. Nano Res. 2013, 6, 822.  doi: 10.1007/s12274-013-0360-4

    45. [45]

      Zhu, M.; Li, X.; Ge, L.; Zi, Y.; Qi, M.; Li, Y.; Li, D.; Mu, C. Mater. Sci. Eng., C 2020, 106, 110185.  doi: 10.1016/j.msec.2019.110185

    46. [46]

      Berchel, M.; Gall, T. L.; Denis, C.; Hir, S. L.; Quentel, F.; Elléouet, C.; Montier, T.; Rueff, J.-M.; Salaün, J.-Y.; Haelters, J.-P.; Hix, G. B.; Lehn, P.; Jaffrès, P.-A. New J. Chem. 2011, 35, 1000.  doi: 10.1039/c1nj20202b

    47. [47]

      Lu, X. Y.; Ye, J. W.; Sun, Y.; Bogale, R. F.; Zhao, L. M.; Tian, P.; Ning, G. L. Dalton Trans. 2014, 43, 10104.  doi: 10.1039/c4dt00270a

    48. [48]

      Lu, X. Y.; Ye, J. W.; Zhao, L. M.; Lin, Y.; Ning, G. L. J. Coord. Chem. 2014, 67, 1133.  doi: 10.1080/00958972.2014.910773

    49. [49]

      Rauf, A.; Ye, J. W.; Hao, A. Y.; Zhao, L. Y.; Zhang, S. Q.; Qi, Y.; Shi, L.; Ning, G. L. J. Coord. Chem. 2018, 71, 3266.  doi: 10.1080/00958972.2018.1510122

    50. [50]

      Zhang, S.; Ye, J.; Sun, Y.; Kang, J.; Liu, J.; Wang, Y.; Li, Y.; Zhang, L.; Ning, G. Chem. Eng. J. 2020, 390, 124523.  doi: 10.1016/j.cej.2020.124523

    51. [51]

      Panchal, P.; Paul, D. R.; Sharma, A.; Choudhary, P.; Meena, P.; Nehra, S. P. J. Colloid Interface Sci. 2020, 563, 370.  doi: 10.1016/j.jcis.2019.12.079

    52. [52]

      Abendrot, M.; Checinska, L.; Kusz, J.; Lisowska, K.; Zawadzka, K.; Felczak, A.; Kalinowska-Lis, U. Molecules 2020, 25, 951.  doi: 10.3390/molecules25040951

    53. [53]

      Li, P.; Li, J.; Feng, X.; Li, J.; Hao, Y.; Zhang, J.; Wang, H.; Yin, A.; Zhou, J.; Ma, X.; Wang, B. Nat. Commun. 2019, 10, 2177.  doi: 10.1038/s41467-019-10218-9

    54. [54]

      Mallick, S.; Sharma, S.; Banerjee, M.; Ghosh, S. S.; Chattopadhyay, A.; Paul, A. ACS Appl. Mater. Interfaces 2012, 4, 1313.  doi: 10.1021/am201586w

    55. [55]

      Chen, S.; Tang, F.; Tang, L.; Li, L. ACS Appl. Mater. Interfaces 2017, 9, 20895.  doi: 10.1021/acsami.7b04956

    56. [56]

      Rauf, A.; Ye, J. W.; Zhang, S. Q.; Shi, L.; Akram, M. A.; Ning, G. L. Polyhedron 2019, 166, 130.  doi: 10.1016/j.poly.2019.03.039

    57. [57]

      Han, D.; Han, Y.; Li, J.; Liu, X.; Yeung, K. W. K.; Zheng, Y.; Cui, Z.; Yang, X.; Liang, Y.; Li, Z.; Zhu, S.; Yuan, X.; Feng, X.; Yang, C.; Wu, S. Appl. Catal., B 2020, 261, 118248.  doi: 10.1016/j.apcatb.2019.118248

    58. [58]

      Lu, X.; Ye, J.; Zhang, D.; Xie, R.; Bogale, R. F.; Sun, Y.; Zhao, L.; Zhao, Q.; Ning, G. J. Inorg. Biochem. 2014, 138, 114.  doi: 10.1016/j.jinorgbio.2014.05.005

    59. [59]

      Liu, Y.; Xu, X.; Xia, Q.; Yuan, G.; He, Q.; Cui, Y. Chem. Commun. 2010, 46, 2608.  doi: 10.1039/b923365b

    60. [60]

      Kirillov, A. M.; Wieczorek, S. W.; Lis, A.; Guedes da Silva, M. F. C.; Florek, M.; Król, J.; Staroniewicz, Z.; Smoleński, P.; Pombeiro, A. J. L. Cryst. Growth Des. 2011, 11, 2711.  doi: 10.1021/cg200571y

    61. [61]

      Akbarzadeh, F.; Motaghi, M.; Chauhan, N. P. S.; Sargazi, G. Heliyon 2020, 6, e03231.

    62. [62]

      Ahmad, N.; Samavati, A.; Nordin, N. A. H. M.; Jaafar, J.; Ismail, A. F.; Malek, N. A. N. N. Sep. Purif. Technol. 2020, 239, 116554.  doi: 10.1016/j.seppur.2020.116554

    63. [63]

      Yang, Y.; Guo, Z.; Huang, W.; Zhang, S.; Huang, J.; Yang, H.; Zhou, Y.; Xu, W.; Gu, S. Appl. Surf. Sci. 2020, 503, 144079.  doi: 10.1016/j.apsusc.2019.144079

    64. [64]

      Qi, Y.; Ye, J.; Ren, S.; Lv, J.; Zhang, S.; Che, Y.; Ning, G. J. Hazard. Mater. 2020, 387, 121687.  doi: 10.1016/j.jhazmat.2019.121687

    65. [65]

      Abednejad, A.; Ghaee, A.; Nourmohammadi, J.; Mehrizi, A. A. Carbohydr. Polym. 2019, 222, 115033.  doi: 10.1016/j.carbpol.2019.115033

    66. [66]

      Majumdar, D.; Das, D.; Sreejith, S. S.; Das, S.; Kumar Biswas, J.; Mondal, M.; Ghosh, D.; Bankura, K.; Mishra, D. Inorg. Chim. Acta 2019, 489, 244.  doi: 10.1016/j.ica.2019.02.022

    67. [67]

      Azad, F. N.; Ghaedi, M.; Dashtian, K.; Hajati, S.; Pezeshkpour, V. Ultrason. Sonochem. 2016, 31, 383.  doi: 10.1016/j.ultsonch.2016.01.024

    68. [68]

      Abbasi, A. R.; Akhbari, K.; Morsali, A. Ultrason. Sonochem. 2012, 19, 846.  doi: 10.1016/j.ultsonch.2011.11.016

    69. [69]

      Zhang, Q.; Yue, C.; Zhang, Y.; Lü, Y.; Hao, Y.; Miao, Y.; Li, J.; Liu, Z. Inorg. Chim. Acta 2018, 473, 112.  doi: 10.1016/j.ica.2017.12.036

    70. [70]

      Usefi, S.; Akhbari, K.; White, J. J. Solid State Chem. 2019, 276, 61.  doi: 10.1016/j.jssc.2019.04.016

    71. [71]

      Abbasloo, F.; Khosravani, S. A.; Ghaedi, M.; Dashtian, K.; Hosseini, E.; Manzouri, L.; Khorramrooz, S. S.; Sharifi, A.; Jannesar, R.; Sadri, F. Ultrason. Sonochem. 2018, 42, 237.  doi: 10.1016/j.ultsonch.2017.11.035

    72. [72]

      Shi, Z.; Zhang, K.; Zada, S.; Zhang, C.; Meng, X.; Yang, Z.; Dong, H. ACS Appl. Mater. Interfaces 2020, 12, 12600.  doi: 10.1021/acsami.0c01467

    73. [73]

      Ni, K.; Luo, T.; Lan, G.; Culbert, A.; Song, Y.; Wu, T.; Jiang, X.; Lin, W. Angew. Chem., Int. Ed. 2020, 59, 1108.  doi: 10.1002/anie.201911429

    74. [74]

      Zheng, X.; Wang, L.; Guan, Y.; Pei, Q.; Jiang, J.; Xie, Z. Biomaterials 2020, 235, 119792.  doi: 10.1016/j.biomaterials.2020.119792

    75. [75]

      Liu, M.; Wang, L.; Zheng, X.; Xie, Z. ACS Appl. Mater. Interfaces 2017, 9, 41512.  doi: 10.1021/acsami.7b15826

    76. [76]

      Engell, R. E.; Lim, S. S. Lancet 2013, 381, S44.

    77. [77]

      Fabrega, J.; Luoma, S. N.; Tyler, C. R.; Galloway, T. S.; Lead, J. R. Environ. Int. 2011, 37, 517.  doi: 10.1016/j.envint.2010.10.012

    78. [78]

      Yan, Z.; Fu, L.; Zuo, X.; Yang, H. Appl. Catal., B 2018, 226, 23.  doi: 10.1016/j.apcatb.2017.12.040

    79. [79]

      Park, C. M.; Chu, K. H.; Heo, J.; Her, N.; Jang, M.; Son, A.; Yoon, Y. J. Hazard. Mater. 2016, 309, 133.  doi: 10.1016/j.jhazmat.2016.02.006

    80. [80]

      Bagheri, N.; Khataee, A.; Hassanzadeh, J.; Habibi, B. J. Hazard. Mater. 2018, 360, 233.  doi: 10.1016/j.jhazmat.2018.08.013

    81. [81]

      Howarth, A. J.; Liu, Y.; Li, P.; Li, Z.; Wang, T. C.; Hupp, J.; Farha, O. K. Nat. Rev. Mater. 2016, 1, 15018.  doi: 10.1038/natrevmats.2015.18

    82. [82]

      Ishida, T.; Nagaoka, M.; Akita, T.; Haruta, M. Chem.-Eur. J. 2008, 14, 8456.  doi: 10.1002/chem.200800980

    83. [83]

      Duan, C.; Liu, C.; Meng, X.; Gao, K.; Lu, W.; Zhang, Y.; Dai, L.; Zhao, W.; Xiong, C.; Wang, W.; Liu, Y.; Ni, Y. Carbohydr. Polym. 2020, 230, 115642.  doi: 10.1016/j.carbpol.2019.115642

    84. [84]

      Whitford, C. L.; Stephenson, C. J.; Gomez-Gualdron, D. A.; Hupp, J. T.; Farha, O. K.; Snurr, R. Q.; Stair, P. C. J. Phys. Chem. C 2017, 121, 25079.  doi: 10.1021/acs.jpcc.7b06773

    85. [85]

      Mukoyoshi, M.; Kobayashi, H.; Kusada, K.; Hayashi, M.; Yamada, T.; Maesato, M.; Taylor, J. M.; Kubota, Y.; Kato, K.; Takata, M.; Yamamoto, T.; Matsumura, S.; Kitagawa, H. Chem. Commun. 2015, 51, 12463.  doi: 10.1039/C5CC04663G

    86. [86]

      Yang, Q.; Xu, Q.; Yu, S.-H.; Jiang, H.-L. Angew. Chem., Int. Ed. 2016, 55, 3685.  doi: 10.1002/anie.201510655

    87. [87]

      Guo, Y.-F.; Fang, W.-J.; Fu, J.-R.; Wu, Y.; Zheng, J.; Gao, G.-Q.; Chen, C.; Yan, R.-W.; Huang, S.-G.; Wang, C.-C. Appl. Surf. Sci. 2018, 435, 149.  doi: 10.1016/j.apsusc.2017.11.096

    88. [88]

      Cheon, Y. E.; Suh, M. P. Angew. Chem., Int. Ed. 2009, 48, 2899.  doi: 10.1002/anie.200805494

    89. [89]

      Suh, M. P.; Moon, H. R.; Lee, E. Y.; Jang, S. Y. J. Am. Chem. Soc. 2006, 128, 4710.  doi: 10.1021/ja056963l

    90. [90]

      Shakya, S.; He, Y.; Ren, X.; Guo, T.; Maharjan, A.; Luo, T.; Wang, T.; Dhakhwa, R.; Regmi, B.; Li, H.; Gref, R.; Zhang, J. Small 2019, 15, 1901065.  doi: 10.1002/smll.201901065

    91. [91]

      Gao, X.; Hai, X.; Baigude, H.; Guan, W.; Liu, Z. Sci. Rep. 2016, 6, 37705.  doi: 10.1038/srep37705

    92. [92]

      Horcajada, P.; Serre, C.; Vallet-Regi, M.; Sebban, M.; Taulelle, F.; Ferey, G. Angew. Chem., Int. Ed. 2006, 45, 5974.  doi: 10.1002/anie.200601878

    93. [93]

      Li, S.; Wang, K.; Shi, Y.; Cui, Y.; Chen, B.; He, B.; Dai, W.; Zhang, H.; Wang, X.; Zhong, C.; Wu, H.; Yang, Q.; Zhang, Q. Adv. Funct. Mater. 2016, 26, 2715.  doi: 10.1002/adfm.201504998

    94. [94]

      Guan, D.; Chen, F.; Qiu, Y.; Jiang, B.; Gong, L.; Lan, L.; Huang, W. Angew. Chem., Int. Ed. 2019, 58, 6678.  doi: 10.1002/anie.201902210

    95. [95]

      Lin, S.; Liu, X.; Tan, L.; Cui, Z.; Yang, X.; Yeung, K. W. K.; Pan, H.; Wu, S. ACS Appl. Mater. Interfaces 2017, 9, 19248.  doi: 10.1021/acsami.7b04810

    96. [96]

      Chen, H.; Yang, J.; Sun, L.; Zhang, H.; Guo, Y.; Qu, J.; Jiang, W.; Chen, W.; Ji, J.; Yang, Y.-W.; Wang, B. Small 2019, 15, 1903880.  doi: 10.1002/smll.201903880

    97. [97]

      Duan, F.; Feng, X.; Jin, Y.; Liu, D.; Yang, X.; Zhou, G.; Liu, D.; Li, Z.; Liang, X.-J.; Zhang, J. Biomaterials 2017, 144, 155.  doi: 10.1016/j.biomaterials.2017.08.024

    98. [98]

      Mao, D.; Hu, F.; Kenry; Ji, S.; Wu, W.; Ding, D.; Kong, D.; Liu, B. Adv. Mater. 2018, 30, 1706831.  doi: 10.1002/adma.201706831

    99. [99]

      Sava Gallis, D. F.; Butler, K. S.; Agola, J. O.; Pearce, C. J.; McBride, A. A. ACS Appl. Mater. Interfaces 2019, 11, 7782.  doi: 10.1021/acsami.8b21698

    100. [100]

      Vallabani, N. V. S.; Vinu, A.; Singh, S.; Karakoti, A. J. Colloid Interface Sci. 2020, 567, 154.  doi: 10.1016/j.jcis.2020.01.099

    101. [101]

      Xi, J.; Wei, G.; An, L.; Xu, Z.; Xu, Z.; Fan, L.; Gao, L. Nano Lett. 2019, 19, 7645.  doi: 10.1021/acs.nanolett.9b02242

    102. [102]

      Xi, J.; Wei, G.; Wu, Q.; Xu, Z.; Liu, Y.; Han, J.; Fan, L.; Gao, L. Biomater. Sci. 2019, 7, 4131.  doi: 10.1039/C9BM00705A

    103. [103]

      Ye, Y.; Xiao, L.; He, B.; Zhang, Q.; Nie, T.; Yang, X.; Wu, D.; Cheng, H.; Li, P.; Wang, Q. J. Mater. Chem. B 2017, 5, 1518.  doi: 10.1039/C6TB03317B

    104. [104]

      Liu, X.; Yan, Z.; Zhang, Y.; Liu, Z.; Sun, Y.; Ren, J.; Qu, X. ACS Nano 2019, 13, 5222.  doi: 10.1021/acsnano.8b09501

  • 加载中
    1. [1]

      Shiyang HeDandan ChuZhixin PangYuhang DuJiayi WangYuhong ChenYumeng SuJianhua QinXiangrong PanZhan ZhouJingguo LiLufang MaChaoliang Tan . Pt Single-Atom-Functionalized 2D Al-TCPP MOF Nanosheets for Enhanced Photodynamic Antimicrobial Therapy. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-0. doi: 10.1016/j.actphy.2025.100046

    2. [2]

      Xiaotong LUPan ZHANGZijie ZHAOLei HUANGHongwei ZUOLili LIANG . Antitumor and antibacterial activities of pyridyl Schiff base indium and dysprosium complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1523-1532. doi: 10.11862/CJIC.20250073

    3. [3]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    4. [4]

      Yinjie XuSuiqin LiLihao LiuJiahui HeKai LiMengxin WangShuying ZhaoChun LiZhengbin ZhangXing ZhongJianguo Wang . Enhanced Electrocatalytic Oxidation of Sterols using the Synergistic Effect of NiFe-MOF and Aminoxyl Radicals. Acta Physico-Chimica Sinica, 2024, 40(3): 2305012-0. doi: 10.3866/PKU.WHXB202305012

    5. [5]

      Shipeng WANGShangyu XIELuxian LIANGXuehong WANGJie WEIDeqiang WANG . Piezoelectric effect of Mn, Bi co-doped sodium niobate for promoting cell proliferation and bacteriostasis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1919-1931. doi: 10.11862/CJIC.20240094

    6. [6]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    7. [7]

      Jianding LIJunyang FENGHuimin RENGang LI . Proton conductive properties of a Hf(Ⅳ)-based metal-organic framework built by 2,5-dibromophenyl-4,6-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1094-1100. doi: 10.11862/CJIC.20240464

    8. [8]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    9. [9]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    10. [10]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    11. [11]

      Xueqi YangJuntao ZhaoJiawei YeDesen ZhouTingmin DiJun Zhang . 调节NNU-55(Fe)的d带中心以增强CO2吸附和光催化活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100074-0. doi: 10.1016/j.actphy.2025.100074

    12. [12]

      Shiyi WANGChaolong CHENXiangjian KONGLansun ZHENGLasheng LONG . Polynuclear lanthanide compound [Ce4Ce6(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 88-96. doi: 10.11862/CJIC.20240342

    13. [13]

      Yang Li Jiachen Li Daidi Fan . 二硫化钼纳米片的制备及其纳米酶性能探究——介绍一个大学化学综合实验. University Chemistry, 2025, 40(8): 233-240. doi: 10.12461/PKU.DXHX202410016

    14. [14]

      Zhuo WangXue BaiKexin ZhangHongzhi WangJiabao DongYuan GaoBin Zhao . MOF-Templated Synthesis of Nitrogen-Doped Carbon for Enhanced Electrochemical Sodium Ion Storage and Removal. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-0. doi: 10.3866/PKU.WHXB202405002

    15. [15]

      Zehao ZhangZheng WangHaibo Li . Preparation of 2D V2O3@Pourous Carbon Nanosheets Derived from V2CFx MXene for Capacitive Desalination. Acta Physico-Chimica Sinica, 2024, 40(8): 2308020-0. doi: 10.3866/PKU.WHXB202308020

    16. [16]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    17. [17]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    18. [18]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    19. [19]

      Lina Feng Guoyu Jiang Xiaoxia Jian Jianguo Wang . Application of Organic Radical Materials in Biomedicine. University Chemistry, 2025, 40(4): 253-260. doi: 10.12461/PKU.DXHX202405171

    20. [20]

      Xiaofang DONGYue YANGShen WANGXiaofang HAOYuxia WANGPeng CHENG . Research progress of conductive metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 14-34. doi: 10.11862/CJIC.20240388

Metrics
  • PDF Downloads(117)
  • Abstract views(4966)
  • HTML views(1402)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return