Citation: Zhang Jing, Tang Gong-ao, Zeng Yu, Wang Baoxing, Liu Liwei, Wu Qiang, Yang Lijun, Wang Xizhang, Hu Zheng. Hierarchical Carbon Nanocages as the High-performance Cathode for Li-O2 Battery Promoted by Soluble Redox Mediator[J]. Acta Chimica Sinica, ;2020, 78(6): 572-576. doi: 10.6023/A20030085 shu

Hierarchical Carbon Nanocages as the High-performance Cathode for Li-O2 Battery Promoted by Soluble Redox Mediator

  • Corresponding author: Wu Qiang, wqchem@nju.edu.cn Wang Xizhang, wangxzh@nju.edu.cn
  • Received Date: 24 March 2020
    Available Online: 28 May 2020

    Fund Project: the National Natural Science Foundation of China 21832003the National Natural Science Foundation of China 21972061the National Natural Science Foundation of China 21773111Project supported by the jointly financial support from the National Key Research and Development Program of China (Nos. 2018YFA0209100, 2017YFA0206500) and the National Natural Science Foundation of China (Nos. 21773111, 21972061, 21832003, 21573107 and 51571110)the jointly financial support from the National Key Research and Development Program of China 2018YFA0209100the jointly financial support from the National Key Research and Development Program of China 2017YFA0206500the National Natural Science Foundation of China 51571110the National Natural Science Foundation of China 21573107

Figures(4)

  • Li-O2 batteries have received much attention due to the high theoretical energy density. However, they still suffer from many challenges such as unsatisfactory practical specific capacity, cycle stability, and relatively high overpotential. The electrochemical performance of Li-O2 batteries is closely related to the reversibility of the discharge (oxygen reduction reaction, ORR) and charge (oxygen evolution reaction, OER) processes. During the discharge process, non-conductive Li2O2 product is formed and gradually covers on the surface of the positive electrode material, leading to the deactivation of battery. The charging process is accompanied by the electrochemical decomposition of Li2O2 products. Therefore, how to achieve the highly reversible formation and decomposition of the Li2O2 product is the key to improve the electrochemical performance of Li-O2 batteries. To date, two strategies have been developed:(ⅰ) sp2 carbon materials with large specific surface area, suitable pore structure and high conductivity are used as cathode materials to disperse/accommodate the Li2O2 product and promote the electron transfer; (ⅱ) the soluble redox mediators with ORR/OER bifunctionally catalytic activities are adopted as the electrolyte additive to promote the formation and decomposition of the Li2O2 product and lower the overpotentials. Recently, we reported a novel 3D hierarchical carbon nanocages (hCNC) featuring on the ultrahigh specific surface area, multiscale pore structure (micro-meso-macropore coexistence), high conductivity, and abundant defects, which demonstrated the excellent electrochemical performances in energy conversion and storage. Herein, taking advantages of hCNC, the high performances of Li-O2 batteries were fabricated, showing high full discharge specific capacity (14080 mAh·g-1) and good cyclability. After adding acetylacetone ferrous (Fe(acac)2) as the redox mediator to electrolyte, the electrochemical performances are further promoted. Namely, the discharge capacity reaches to 23560 mAh·g-1 at the current density of 0.1 A·g-1 (7.82 times of XC-72), and the cycle numbers are up to 138 cycles at the current density of 0.5 A·g-1 and the discharge/charge depth of 800 mAh·g-1 (far higher than 68 cycles of hCNC without Fe(acac)2 and 13 cycles of XC-72). Especially, at the high current density of 5.0 A·g-1, the cycle numbers still reach to 63 cycles, far higher than 21 cycles of hCNC without Fe(acac)2. Such excellent electrochemical performances can be ascribed to:the unique structure of hCNC facilitating electron transfer, reversible conversion of 2Li++O2+2e-⇆Li2O2(s), and dispersion/accommodation of the insulating Li2O2 product; the soluble redox mediator of Fe(acac)2 effectively catalyzing the discharge products of Li2O2 to form uniformly dispersed small-sized particles and decompose completely during the charge process. This provides a promising strategy for improving the performance of Li-O2 batteries via designing novel carbon-based positive electrode materials and adding efficient soluble redox mediators.
  • 加载中
    1. [1]

      Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J. M. Nat. Mater. 2012, 11, 19.  doi: 10.1038/nmat3191

    2. [2]

      Girishkumar, G.; McCloskey, B.; Luntz, A. C.; Swanson, S.; Wilcke, W. J. Phys. Chem. Lett. 2010, 1, 2193.  doi: 10.1021/jz1005384

    3. [3]

      Li, F. J.; Zhang, T.; Zhou, H. S. Energy Environ. Sci. 2013, 6, 1125.  doi: 10.1039/c3ee00053b

    4. [4]

      Cheng, F.; Chen, J. Acta Chim. Sinica 2013, 71, 473.  doi: 10.3866/PKU.WHXB201212273
       

    5. [5]

      Gu, D. M.; Zhang, C. M.; Gu, S.; Zhang, Y.; Wang, Y.; Qiang, L. S. Acta Chim. Sinica 2012, 70, 2115.  doi: 10.3866/PKU.WHXB201206141
       

    6. [6]

      Gu, D. M.; Wang, Y.; Gu, S.; Zhang, C. M.; Yang, D. D. Acta Chim. Sinica 2013, 71, 1354.
       

    7. [7]

      Aurbach, D.; McCloskey, B. D.; Nazar, L. F.; Bruce, P. G. Nat. Energy 2016, 1, 1.

    8. [8]

      Yang, S. X.; He, P.; Zhou, H. S. Energy Storage Mater. 2018, 13, 29.  doi: 10.1016/j.ensm.2017.12.020

    9. [9]

      Aetukuri, N. B.; McCloskey, B. D.; García, J. M.; Krupp, L. E.; Viswanathan, V.; Luntz, A. C. Nat. Chem. 2015, 7, 50.  doi: 10.1038/nchem.2132

    10. [10]

      Vivek, J. P.; Homewood, T.; Garcia-Araez, N. J. Phys. Chem. C 2019, 123, 20241.  doi: 10.1021/acs.jpcc.9b03403

    11. [11]

      Gao, X. W.; Jovanov, Z. P.; Chen, Y. H.; Johnson, L. R.; Bruce, P. G.; Angew. Chem., Int. Ed. 2017, 56, 6539.  doi: 10.1002/anie.201702432

    12. [12]

      Balaish, M.; Gao, X. W.; Bruce, P. G.; Ein-Eli, Y. Adv. Mater. Technol. 2019, 4, 1800645.  doi: 10.1002/admt.201800645

    13. [13]

      Shu, C. Z.; Wang, J. Z.; Long, J. P.; Liu, H. K.; Dou, S. X. Adv. Mater. 2019, 1804587.

    14. [14]

      Jung, J. W.; Choi, D. W.; Lee, C. K.; Yoon, K. R.; Yu, S.; Cheong, J. Y.; Kim, C. H.; Cho, S. H.; Park, J. S.; Park, Y. J.; Kim, I. D. Nano Energy 2018, 46, 193.  doi: 10.1016/j.nanoen.2018.01.045

    15. [15]

      Jiang, J.; Liu, X. F.; Zhao, S. Y.; He, P.; Zhou, H. S. Acta Chim. Sinica 2014, 72, 417.
       

    16. [16]

      Shen, X. X.; Zhang, S. S.; Wu, Y. P.; Chen, Y. H. ChemSusChem 2019, 12, 104.  doi: 10.1002/cssc.201802007

    17. [17]

      Lee, D.; Park, H.; Ko, Y.; Park, H.; Hyeon, T.; Kang, K.; Park, J. J. Am. Chem. Soc. 2019, 141, 8047.

    18. [18]

      Deng, H.; Qiao, Y.; Zhang, X.; Qiu, F.; Chang, Z.; He, P.; Zhou, H. J. Mater. Chem. A 2019, 7, 17261.  doi: 10.1039/C9TA04946K

    19. [19]

      Park, J. B.; Lee, S. H.; Jung, H. G.; Aurbach, D.; Sun, Y. K. Adv. Mater. 2018, 30, 1704162.  doi: 10.1002/adma.201704162

    20. [20]

      Chen, Y.; Freunberger, S. A.; Peng, Z.; Fontaine, O.; Bruce, P. G. Nat. Chem. 2013, 5, 489.  doi: 10.1038/nchem.1646

    21. [21]

      Lin, X. D.; Yuan, R. M.; Cao, Y.; Ding, X. B.; Cai, S. R.; Han, B. W.; Hong, Y. H.; Zhou, Z. Y.; Yang, X. L.; Gong, L.; Zheng, M. S.; Dong, Q. F. Chem 2018, 4, 2685.  doi: 10.1016/j.chempr.2018.08.029

    22. [22]

      Xu, J. J.; Chang, Z. W.; Wang, Y.; Liu, D. P.; Zhang, Y.; Zhang, X. B. Adv. Mater. 2016, 28, 9620.  doi: 10.1002/adma.201603454

    23. [23]

      Gao, X.; Chen, Y. H.; Johnson, L.; Bruce, P. G. Nat. Mater. 2016, 15, 918.  doi: 10.1038/nmat4691

    24. [24]

      Lyu, Z. Y.; Yang, L. J.; Xu, D.; Zhao, J.; Lai, H. W.; Jiang, Y. F.; Wu, Q.; Li, Y.; Wang, X. Z.; Hu, Z. Nano Res. 2015, 8, 3535.  doi: 10.1007/s12274-015-0853-4

    25. [25]

      Jiang, Y. F.; Yang, L. J.; Sun, T.; Zhao, J.; Lyu, Z. Y.; Zhuo, O.; Wang, X. Z.; Wu, Q.; Ma, J.; Hu, Z. ACS Catal. 2015, 5, 6707.  doi: 10.1021/acscatal.5b01835

    26. [26]

      Lyu, Z. Y.; Xu, D.; Yang, L. J.; Che, R.; Feng, R.; Zhao, J.; Li, Y.; Wu, Q.; Wang, X. Z.; Hu, Z. Nano Energy 2015, 12, 657.  doi: 10.1016/j.nanoen.2015.01.033

    27. [27]

      Chen, S.; Bi, J. Y.; Zhao, Y.; Yang, L. J.; Zhang, C.; Ma, Y. W.; Wu, Q.; Wang, X. Z.; Hu, Z. Adv. Mater. 2012, 24, 5593.  doi: 10.1002/adma.201202424

  • 加载中
    1. [1]

      Ying LiYushen ZhaoKai ChenXu LiuTingfeng YiLi-Feng Chen . Rational Design of Cross-Linked N-Doped C-Sn Nanofibers as Free-Standing Electrodes towards High-Performance Li-Ion Battery Anodes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305007-0. doi: 10.3866/PKU.WHXB202305007

    2. [2]

      Hao ChenDongyue YangGang HuangXinbo Zhang . Progress on Liquid Organic Electrolytes of Li-O2 Batteries. Acta Physico-Chimica Sinica, 2024, 40(7): 2305059-0. doi: 10.3866/PKU.WHXB202305059

    3. [3]

      Jianbao MeiBei LiShu ZhangDongdong XiaoPu HuGeng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5−xMn0.5V1.5−xZrx (PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-0. doi: 10.3866/PKU.WHXB202407023

    4. [4]

      Jingyi XieQianxi LüWeizhen QiaoChenyu BuYusheng ZhangXuejun ZhaiRenqing LüYongming ChaiBin Dong . Enhancing Cobalt―Oxygen Bond to Stabilize Defective Co2MnO4 in Acidic Oxygen Evolution. Acta Physico-Chimica Sinica, 2024, 40(3): 2305021-0. doi: 10.3866/PKU.WHXB202305021

    5. [5]

      Xuewei BACheng CHENGHuaikang ZHANGDeqing ZHANGShuhua LI . Preparation and luminescent performance of Sr1-xZrSi2O7xDy3+ phosphor with high thermal stability. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 357-364. doi: 10.11862/CJIC.20240096

    6. [6]

      Ruonan YangJiajia LiDongmei ZhangXiuqi ZhangXia LiHan YuZhanhu GuoChuanxin HouGang LianFeng Dang . Grain-refining Co0.85Se@CNT cathode catalyst with promoted Li2O2 growth kinetics for lithium-oxygen batteries. Chinese Chemical Letters, 2024, 35(12): 109595-. doi: 10.1016/j.cclet.2024.109595

    7. [7]

      Jie WUZhihong LUOXiaoli CHENFangfang XIONGLi CHENBiao ZHANGBin SHIQuansheng OUYANGJiaojing SHAO . Critical roles of AlPO4 coating in enhancing cycling stability and rate capability of high voltage LiNi0.5Mn1.5O4 cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 948-958. doi: 10.11862/CJIC.20240400

    8. [8]

      Yingtong ShiGuotong XuGuizeng LiangDi LanSiyuan ZhangYanru WangDaohao LiGuanglei Wu . PEG-VN改性PP隔膜用于高稳定性高效率锂硫电池. Acta Physico-Chimica Sinica, 2025, 41(7): 100082-0. doi: 10.1016/j.actphy.2025.100082

    9. [9]

      Bowen YangRui WangBenjian XinLili LiuZhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 2310024-0. doi: 10.3866/PKU.WHXB202310024

    10. [10]

      Zehao ZhangZheng WangHaibo Li . Preparation of 2D V2O3@Pourous Carbon Nanosheets Derived from V2CFx MXene for Capacitive Desalination. Acta Physico-Chimica Sinica, 2024, 40(8): 2308020-0. doi: 10.3866/PKU.WHXB202308020

    11. [11]

      Yawen GuoDawei LiYang GaoCuihong Li . Recent Progress on Stability of Organic Solar Cells Based on Non-Fullerene Acceptors. Acta Physico-Chimica Sinica, 2024, 40(6): 2306050-0. doi: 10.3866/PKU.WHXB202306050

    12. [12]

      Xiaojing TianZhichun HuangQingsong ZhangXu WangNing YangNanping Deng . PNIPAm Thermo-Responsive Nanofibers Mats: Morphological Stability and Response Behavior under Cross-Linking. Acta Physico-Chimica Sinica, 2024, 40(4): 2304037-0. doi: 10.3866/PKU.WHXB202304037

    13. [13]

      Wang WangYucheng LiuShengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059

    14. [14]

      Mingxuan QiLanyu JinHonghe YaoZipeng XuTeng ChengQi ChenCheng ZhuYang Bai . Recent progress on electrical failure and stability of perovskite solar cells under reverse bias. Acta Physico-Chimica Sinica, 2025, 41(8): 100088-0. doi: 10.1016/j.actphy.2025.100088

    15. [15]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

    16. [16]

      Yang LIULijun WANGHongyu WANGZhidong CHENLin SUN . Surface and interface modification of porous silicon anodes in lithium-ion batteries by the introduction of heterogeneous atoms and hybrid encapsulation. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 773-785. doi: 10.11862/CJIC.20250015

    17. [17]

      Qinjin DAIShan FANPengyang FANXiaoying ZHENGWei DONGMengxue WANGYong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326

    18. [18]

      Kunyao PengXianbin WangXingbin Yan . Converting LiNO3 additive to single nitrogenous component Li2N2O2 SEI layer on Li metal anode in carbonate-based electrolyte. Chinese Chemical Letters, 2024, 35(9): 109274-. doi: 10.1016/j.cclet.2023.109274

    19. [19]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    20. [20]

      Peng JiaYunna GuoDongliang ChenXuedong ZhangJingming YaoJianguo LuLiqiang ZhangIn-situ imaging electrocatalysis in a solid-state Li-O2 battery with CuSe nanosheets as air cathode. Chinese Chemical Letters, 2024, 35(5): 108624-. doi: 10.1016/j.cclet.2023.108624

Metrics
  • PDF Downloads(2)
  • Abstract views(662)
  • HTML views(114)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return