Citation: Guo Zhenbin, Zhang Yuanyuan, Feng Xiao. Separation and Purification of C4~C6 Hydrocarbons Using Metal-organic Frameworks[J]. Acta Chimica Sinica, ;2020, 78(5): 397-406. doi: 10.6023/A20030081 shu

Separation and Purification of C4~C6 Hydrocarbons Using Metal-organic Frameworks

  • Corresponding author: Zhang Yuanyuan, 6120190112@bit.edu.cn
  • Received Date: 21 March 2020
    Available Online: 20 April 2020

    Fund Project: Project supported by the National Natural Science Foundation of China (Nos. 21922502, 21674012)the National Natural Science Foundation of China 21922502the National Natural Science Foundation of China 21674012

Figures(8)

  • As important chemical raw materials and energy source, C4~C6 hydrocarbons are mainly used to produce polymer rubber, plastics and high-quality gasoline, which requires high purity of the raw materials. For example, the purity requirement in 1, 3-butadiene polymerization reactor is higher than 99.5%. When producing butyl rubber, tert-butylamine, pivalic acid, etc., the purity of isobutylene should surpass 99%. In the traditional petrochemical industry, C4~C6 hydrocarbons are mostly separated and purified through distillation, yet suffering from large energy consumption, high equipment cost and poor economic benefits. Adsorption separation with solid adsorbents can not only reduce energy cost and environmental footprints, but also improve separation efficiency. Metal-organic frameworks (MOFs) are a class of crystalline porous materials assembled from metal ions or clusters and organic linkers. Compared with zeolite, activated carbon and silica gel, MOFs feature high porosity, well-defined open channels, rich functional groups and diverse structures, showing great potentials in gas storage and separation, sensing, catalysis, photoelectric devices, drug release and delivery. Up to now, there have been many reports on separation and purification of C4~C6 hydrocarbons using MOFs by different mechanisms. Specifically, highly selective separation can be achieved by precisely adjusting the size and shape of the MOF channels to match the size of the target molecule. Besides, selecting MOFs with specific functional groups, open metal sites or flexible skeletons to regulate the interactions between the gas molecules and backbone, can also achieve efficient separation. This review introduced the importance of C4~C6 hydrocarbons separation and summarized the current research progress of using MOFs to separate and purify C4~C6 hydrocarbons. In addition, we also summed up the challenges of using MOFs as industrial adsorbents and pointed out the possible research directions in the future, which may provide ideas for designing new MOFs with high performance for crucial separation processes.
  • 加载中
    1. [1]

      Bender, M. ChemBioEng Rev. 2014, 1, 136.  doi: 10.1002/cben.201400016

    2. [2]

      Gehre, M.; Guo, Z.; Rothenberg, G.; Tanase, S. ChemSusChem 2017, 10, 3947.  doi: 10.1002/cssc.201700657

    3. [3]

      Ed.: Myers, R. A. Handbook of Petroleum Refining Processes, McGraw-Hill, New York, 2004.

    4. [4]

      Greensfelder, B. S.; Voge, H. H. Ind. Eng. Chem. Res. 1945, 37, 514.  doi: 10.1021/ie50426a008

    5. [5]

      Li, J.-R.; Kuppler, R. J.; Zhou, H.-C. Chem. Soc. Rev. 2009, 38, 1477.  doi: 10.1039/b802426j

    6. [6]

      Tijsebaert, B.; Varszegi, C.; Gies, H.; Xiao, F. S.; Bao, X.; Tatsumi, T.; Muller, U.; De Vos, D. Chem. Commun. 2008, 2480.

    7. [7]

      (a) Yaghi, O. M.; O'Keeffe, M.; Ockwig, N. W.; Chae, H. K.; Eddaoudi, M.; Kim, J. Science 2005, 310, 1166. (b) Kitagawa, S.; Kitaura, R.; Noro, S. Angew. Chem., Int. Ed. 2004, 43, 2334. (c) Ferey, G. Chem. Soc. Rev. 2008, 37, 191. (d) Farha, O. K.; Hupp, J. T. Acc. Chem. Res. 2010, 43, 1166. (e) Eddaoudi, M.; Li, H.; Yaghi, O. M. J. Am. Chem. Soc. 2000, 122, 1391. (f) Farha, O. K.; Eryazici, I.; Jeong, N. C.; Hauser, B. G.; Wilmer, C. E.; Sarjeant, A. A.; Snurr, R. Q.; Nguyen, S. T.; Yazaydın, A. Ö.; Hupp, J. T.
J. Am. Chem. Soc. 2012, 134, 15016.

    8. [8]

    9. [9]

    10. [10]

    11. [11]

    12. [12]

      (a) Cui, W. G.; Hu, T. L.; Bu, X. H. Adv. Mater. 2019, 32, 1806445. (b) Li, J. R.; Kuppler, R. J.; Zhou, H. C. Chem. Soc. Rev. 2009, 38, 1477.

    13. [13]

      Sircar, S.; Mohr, R.; Ristic, C.; Rao, M. B. J. Phys. Chem. B 1999, 103, 6539.  doi: 10.1021/jp9903817

    14. [14]

      Hartmann, M.; Kunz, S.; Himsl, D.; Tangermann, O.; Ernst, S.; Wagener, A. Langmuir 2008, 24, 8634.  doi: 10.1021/la8008656

    15. [15]

      Schoonheydt, R. A.; Weckhuysen, B. M. Phys. Chem. Chem. Phys. 2009, 11, 2794.  doi: 10.1039/b905015a

    16. [16]

      Barnett, B. R.; Parker, S. T.; Paley, M. V.; Gonzalez, M. I.; Biggins, N.; Oktawiec, J.; Long, J. R. J. Am. Chem. Soc. 2019, 141, 18325.  doi: 10.1021/jacs.9b09942

    17. [17]

      Jiao, J.; Liu, H.; Bai, D.; He, Y. Inorg. Chem. 2016, 55, 3974.  doi: 10.1021/acs.inorgchem.6b00253

    18. [18]

      Kim, H.; Park, J.; Jung, Y. Phys. Chem. Chem. Phys. 2013, 15, 19644.  doi: 10.1039/c3cp52980k

    19. [19]

      Jiao, J.; Liu, H.; Bai, D.; He, Y. Inorg. Chem. 2016, 55, 3974.  doi: 10.1021/acs.inorgchem.6b00253

    20. [20]

      Zhang, Z.; Yang, Q.; Cui, X.; Yang, L.; Bao, Z.; Ren, Q.; Xing, H. Angew. Chem., Int. Ed. 2017, 56, 16282.  doi: 10.1002/anie.201708769

    21. [21]

      Cui, J.; Zhang, Z.; Tan, B.; Zhang, Y.; Wang, P.; Cui, X.; Xing, H. Chem. Asian. J. 2019, 14, 3572.  doi: 10.1002/asia.201900735

    22. [22]

      Lange, M.; Kobalz, M.; Bergmann, J.; Lässig, D.; Lincke, J.; Möllmer, J.; Möller, A.; Hofmann, J.; Krautscheid, H.; Staudt, R.; Gläser, R. J. Mater. Chem. A 2014, 2, 8075.  doi: 10.1039/C3TA15331B

    23. [23]

      Kishida, K.; Okumura, Y.; Watanabe, Y.; Mukoyoshi, M.; Bracco, S.; Comotti, A.; Sozzani, P.; Horike, S.; Kitagawa, S. Angew. Chem., Int. Ed. 2016, 55, 13784.
  doi: 10.1002/anie.201607676

    24. [24]

      Liao, P.-Q.; Huang, N.-Y.; Zhang, W.-X.; Zhang, J.-P.; Chen, X.-M. Science 2017, 356, 1193.  doi: 10.1126/science.aam7232

    25. [25]

      Chen, B.; Liang, C.; Yang, J.; Contreras, D. S.; Clancy, Y. L.; Lobkovsky, E. B.; Yaghi, O. M.; Dai, S. Angew. Chem., Int. Ed. 2006, 45, 1390.  doi: 10.1002/anie.200502844

    26. [26]

      Herm, Z. R.; Wiers, B. M.; Mason, J. A.; Baten, J. M.; Hudson, M. R.; Zajdel, P.; Brown, C. M.; Masciocchi, N.; Krishna, R.; Long, J. R. Science 2013, 340, 960.  doi: 10.1126/science.1234071

    27. [27]

      Mendes, P. A. P.; Horcajada, P.; Rives, S.; Ren, H.; Rodrigues, A. E.; Devic, T.; Magnier, E.; Trens, P.; Jobic, H.; Ollivier, J.; Maurin, G.; Serre, C.; Silva, J. A. C. Adv. Funct. Mater. 2014, 24, 7666.  doi: 10.1002/adfm.201401974

    28. [28]

      Assen, A. H.; Belmabkhout, Y.; Adil, K.; Bhatt, P. M.; Xue, D. X.; Jiang, H.; Eddaoudi, M. Angew. Chem., Int. Ed. 2015, 54, 14353.  doi: 10.1002/anie.201506345

    29. [29]

      Wang, H.; Dong, X.; Lin, J.; Teat, S. J.; Jensen, S.; Cure, J.; Alexandrov, E. V.; Xia, Q.; Tan, K.; Wang, Q.; Olson, D. H.; Proserpio, D. M.; Chabal, Y. J.; Thonhauser, T.; Sun, J.; Han, Y.; Li, J. Nat. Commun. 2018, 9, 1745.  doi: 10.1038/s41467-018-04152-5

    30. [30]

      Wang, H.; Dong, X.; Velasco, E.; Olson, D. H.; Han, Y.; Li, J. Energy Environ. Sci. 2018, 11, 1226.  doi: 10.1039/C8EE00459E

    31. [31]

      Ding, N.; Li, H.-W.; Wang, Q.-Y.; Wang, S.; Ma, L.; Zhou, J.-W.; Wang, B. J. Am. Chem. Soc. 2016, 138, 10100.  doi: 10.1021/jacs.6b06051

  • 加载中
    1. [1]

      Qiuting Zhang Fan Wu Jin Liu Zian Lin . Chromatographic Stationary Phase and Chiral Separation Using Frame Materials. University Chemistry, 2025, 40(4): 291-298. doi: 10.12461/PKU.DXHX202405174

    2. [2]

      Hui Wang Abdelkader Labidi Menghan Ren Feroz Shaik Chuanyi Wang . 微观结构调控的g-C3N4在光催化NO转化中的最新进展:吸附/活化位点的关键作用. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-. doi: 10.1016/j.actphy.2024.100039

    3. [3]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    4. [4]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    5. [5]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    6. [6]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    7. [7]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    8. [8]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    9. [9]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    10. [10]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    11. [11]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    12. [12]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    13. [13]

      Yang Chen Peng Chen Yuyang Song Yuxue Jin Song Wu . Application of Chemical Transformation Driven Impurity Separation in Experiments Teaching: A Novel Method for Purification of α-Fluorinated Mandelic Acid. University Chemistry, 2024, 39(6): 253-263. doi: 10.3866/PKU.DXHX202310077

    14. [14]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    15. [15]

      Xiaofang DONGYue YANGShen WANGXiaofang HAOYuxia WANGPeng CHENG . Research progress of conductive metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 14-34. doi: 10.11862/CJIC.20240388

    16. [16]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    17. [17]

      Qianlang Wang Jijun Sun Qian Chen Quanqin Zhao Baojuan Xi . The Appeal of Organophosphorus Compounds: Clearing Their Name. University Chemistry, 2025, 40(4): 299-306. doi: 10.12461/PKU.DXHX202405205

    18. [18]

      Shasha Ma Zujin Yang Jianyong Zhang . Facile Synthesis of FeBTC Metal-Organic Gel and Its Adsorption of Cr2O72−: A Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(8): 314-323. doi: 10.3866/PKU.DXHX202401008

    19. [19]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    20. [20]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

Metrics
  • PDF Downloads(33)
  • Abstract views(2686)
  • HTML views(378)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return