Citation: Liu Ji-Lin, Yu Kai, Zhang Hong, Jiang Jie. Progress in the Study of Electrochemical Reaction by Mass Spectrometric Ionization Sources[J]. Acta Chimica Sinica, ;2020, 78(6): 504-515. doi: 10.6023/A20030070 shu

Progress in the Study of Electrochemical Reaction by Mass Spectrometric Ionization Sources

  • Corresponding author: Jiang Jie, jiejiang@hitwh.edu.cn
  • Received Date: 16 March 2020
    Available Online: 25 May 2020

    Fund Project: Project supported by the National Natural Science Foundation of China (No. 21804027)the National Natural Science Foundation of China 21804027

Figures(18)

  • Electrochemical reaction is a continuous dynamic process, accompanied by generation of short-lived intermediates and complex structural substances. Therefore, precisely and effectively capturing the products of the reaction process is helpful to accurately deduce its reaction mechanism, optimize the reaction parameters and improve the reaction efficiency. At present, the mainstream electrochemical on-line monitoring techniques include spectroscopy, cyclic voltammetry and linear polarization curves. These methods are capable to detect the structure and composition changes of most substances in the reaction process. However, in order to more systematically and accurately grasp the information of all products, the real-time and in situ reaction monitoring technologies needs to be further expanded. Mass spectrometry (MS) has the advantages of high sensitivity, good selectivity, rapid response time and structural analysis, making itself an ideal research method for electrochemical reactions. In recent years, more and more reports on the study of electrochemical reaction by MS have been published. In particular, ambient ionization sources such as electrospray ionization (ESI) and its derived ionization techniques developed for electrochemistry have become a research hotspot. This review introduced the recently published electrochemistry-mass spectrometry (EC-MS) techniques, and described the electrochemical ion sources that designed and developed for different types of electrochemical reactions.
  • 加载中
    1. [1]

      Kuhl, K. P.; Cave, E. R.; Abram, D. N.; Jaramillo, T. F. Energ. Environ. Sci. 2012, 5, 7050.  doi: 10.1039/c2ee21234j

    2. [2]

      Kramer, W. W.; Mccrory, C. C. L. Chem. Sci. 2016, 7, 2506.  doi: 10.1039/C5SC04015A

    3. [3]

      Ren, S.-X.; Joulié, D.; Salvatore, D.; Torbensen, K.; Wang, M.; Robert, M.; Berlinguette, C. P. Science 2019, 365, 367.  doi: 10.1126/science.aax4608

    4. [4]

      Wang, K.; Chen, Y.-P.; Lei, Y.; Zhong, G.-X.; Liu, A.-L.; Zheng, Y.-J.; Sun, Z.-L.; Lin, X.-H.; Chen, Y.-Z. Microchim. Acta 2013, 180, 871.  doi: 10.1007/s00604-013-1005-8

    5. [5]

      Schorr, N. B.; Jiang, A. G.; Joaquín R. L. Anal. Chem. 2018, 90, 7848.  doi: 10.1021/acs.analchem.8b00730

    6. [6]

      Li, C. Y.; Dong, J. C.; Jin, X.; Chen, S.; Panneerselvam, R.; Rudnev, A. V.; Yang, Z. L.; Li, J. F.; Wandlowski, T.; Tian, Z. Q. J. Am. Chem. Soc. 2015, 137, 7648.  doi: 10.1021/jacs.5b04670

    7. [7]

      Lin, X.-M.; Wu, D.-Y.; Gao, P.; Chen, Z.; Ruben, M.; Fichtner, M. Chem. Mater. 2019, 31, 3239.  doi: 10.1021/acs.chemmater.9b00077

    8. [8]

      Benyoucef, A.; Boussalem, S.; Ferrahi, M. I.; Belbachir, M. Synthetic Met. 2010, 160, 1591.  doi: 10.1016/j.synthmet.2010.05.020

    9. [9]

      Liu, Y.; Berná, A.; Climent, V.; Feliu, J. M. Sensor. Actuat. B-Chem. 2015, 209, 781.  doi: 10.1016/j.snb.2014.12.047

    10. [10]

      Concha, B. M.; Chatenet, M.; Ticianelli, E. A.; Lima, F. H. B. J. Phys. Chem. C 2011, 115, 12439.  doi: 10.1021/jp2002589

    11. [11]

      Boisseau, R.; Bussy, U.; Giraudeau, P.; Boujtita, M. Anal. Chem. 2015, 87, 372.  doi: 10.1021/ac5041956

    12. [12]

      Bussy, U.; Boujtita, M. Talanta 2015, 136, 155.  doi: 10.1016/j.talanta.2014.08.033

    13. [13]

      Gomes. B. F.; Silva, P. F.; Lobo, C. M. S.; Santos, M. S.; Colnago, L. A. Anal. Chim. Acta 2017, 983, 91.  doi: 10.1016/j.aca.2017.06.008

    14. [14]

      Wang, J.; Lin, L.; He, Y.; Qin, H.; Yan, S.; Yang, K.; Li, A. Electrochim. Acta 2017, 254, 72.  doi: 10.1016/j.electacta.2017.09.102

    15. [15]

      Lim, H.; Yilmaz, E.; Byon, H. R. J. Phys. Chem. Lett. 2012, 3, 3210.  doi: 10.1021/jz301453t

    16. [16]

      Villevieille, C.; Ebner, M.; Camer, J. L. G.; Marone, F.; Novak, P.; Wood, V. Adv. Mater. 2015, 27, 1676.  doi: 10.1002/adma.201403792

    17. [17]

      Klein, F.; Pinedo, R.; Hering, P.; Polity, A.; Janek, J.; Adelhelm, P. J. Phys. Chem. C 2016, 120, 1400.  doi: 10.1021/acs.jpcc.5b10642

    18. [18]

      Wu, X.; Villevieille, C.; Novak, P.E.; Kazzi, M. Phys. Chem. Chem. Phys. 2018, 20, 11123.  doi: 10.1039/C8CP01213J

    19. [19]

      Philippe, B.; Dedryvere, R.; Gorgoi, M.; Rensmo, H.; Gonbeau, D.; Edstrom, K. J. Am. Chem. Soc. 2013, 135, 9829.  doi: 10.1021/ja403082s

    20. [20]

      Lutz, L.; Dachraoui, W.; Demortière, A.; Johnson, L. R.; Bruce, P. G.; Grimaud, A.; Tarascon, J. M. Nano Lett. 2018, 18, 1280.  doi: 10.1021/acs.nanolett.7b04937

    21. [21]

      Lee, D.; Park, H.; Ko, Y.; Park, H.; Hyeon, T.; Kang, K.; Park, J. J. Am. Chem. Soc. 2019, 141, 8047.

    22. [22]

      Shang, T.; Wen, Y.; Xiao, D.; Gu, L.; Hu, Y.-S.; Li, H. Adv. Energy Mater. 2017, 7, 1700709.  doi: 10.1002/aenm.201700709

    23. [23]

      Shen, J.; Kortlever, R.; Kas, R.; Birdja, Y. Y.; Morales, O. D.; Kwon, Y.; Yanez, I. L.; Schouten, K. J.; Mul, G.; Koper, M. T. Nat. Commun. 2015, 6, 8177.  doi: 10.1038/ncomms9177

    24. [24]

      Minamimoto, H.; Osaka, R.; Murakoshi, K. Electrochim. Acta 2019, 304, 87.  doi: 10.1016/j.electacta.2019.02.088

    25. [25]

      Zheng, Q.; Liu, Y.; Chen, Q.; Hu, M.; Helmy, R.; Sherer, E. C.; Welch, C. J.; Chen, H. J. Am. Chem. Soc. 2015, 137, 14035.  doi: 10.1021/jacs.5b08905

    26. [26]

      El-Aneed, A.; Cohen, A.; Banoub, J. Appl. Spectrosc. Rev. 2009, 44, 210.  doi: 10.1080/05704920902717872

    27. [27]

      Bruckenstein, S.; Gadde, R. R. J. Am. Chem. Soc. 1971, 93, 793.  doi: 10.1021/ja00732a049

    28. [28]

      Nuno, M.; Ball, R. J.; Bowen, C. R. J. Mass Spectrom. 2014, 49, 716.  doi: 10.1002/jms.3396

    29. [29]

      Kuckelmann, U.; Warscheid, S.; Hoffmann T. Anal. Chem. 2000, 72, 1905.  doi: 10.1021/ac991178a

    30. [30]

      Edward, C.; Fortner, J. Z.; Zhang, R. Anal. Chem. 2004, 76, 5436.  doi: 10.1021/ac0493222

    31. [31]

      Kalinoski, H. T.; Hacksell, U.; Barofsky, D. F.; Barofsky, E.; Daves, G. D. J. Am. Chem. Soc. 1985, 107, 6476.  doi: 10.1021/ja00309a009

    32. [32]

      Haven, J. J.; Vandenbergh, J.; Junkers, T. Chem. Commun. 2015, 51, 4611.  doi: 10.1039/C4CC10426A

    33. [33]

      Rand, K. D.; Bache, N.; Nedertoft, M. M.; Jorgensen, T. Anal. Chem. 2011, 83, 8859.  doi: 10.1021/ac202468v

    34. [34]

      Paz-Schmidt, R. A.; Bonrath, W.; Plattner, D. A. Anal. Chem. 2009, 81, 3665.  doi: 10.1021/ac802754q

    35. [35]

      Pasilis, S. P.; Kertesz, V.; Van Berkel, G. J. Anal. Chem. 2008, 80, 1208.  doi: 10.1021/ac701791w

    36. [36]

      Takats, Z.; Wiseman, J. M.; Gologan, B.; Cooks, R. G. Science 2004, 306, 471.  doi: 10.1126/science.1104404

    37. [37]

      Petucci, C.; Diffendal, J.; Kaufman, D.; Mekonnen, B.; Terefenko, G.; Musselman, B. Anal. Chem. 2007, 79, 5064.  doi: 10.1021/ac070443m

    38. [38]

      Ashton, G. P.; Harding, L. P.; Parkes, G. M. B.; Pownall, S. E. Rapid Commun. Mass Spectrom. 2019, 1.

    39. [39]

      Jusys, Z.; Massong, H.; Baltruschat, H. J. Electrochem. Soc. 1999, 146, 1093.  doi: 10.1149/1.1391726

    40. [40]

      Gao, Y.; Tsuji, H.; Hattori, H.; Kita, H. J. Electroanal. Chem. 1994, 372, 195.  doi: 10.1016/0022-0728(93)03291-V

    41. [41]

      Hartung, T.; Baltruschat, H. Langmuir 1990, 6, 953.  doi: 10.1021/la00095a012

    42. [42]

      Wolter, O.; Heitbaum, J. Ber. Bunsenges. Phys. Chem. 1984, 88, 2.  doi: 10.1002/bbpc.19840880103

    43. [43]

      Eggert, G.; Heitbaum, J. Electrochim. Acta 1986, 31, 1443.  doi: 10.1016/0013-4686(86)87057-8

    44. [44]

      Jia, S.; Matsuda, S.; Tamura, S.; Shironita, S.; Umeda, M. Electrochim. Acta 2018, 261, 340.  doi: 10.1016/j.electacta.2017.12.153

    45. [45]

      Zheng, Y.; Chen, W.; Zuo, X.-Q.; Cai, J.; Chen, Y.-X. Electrochem. Commun. 2016, 73, 38.  doi: 10.1016/j.elecom.2016.10.012

    46. [46]

      Qu, Y.; Wang, L.; Li, C.; Gao, Y.; Sik, J. K.; Rao, J.; Yin, G. Int. J. Hydrogen Energ. 2017, 42, 228.  doi: 10.1016/j.ijhydene.2016.08.215

    47. [47]

      Ju, K.-S.; Pak, S.-N.; Ri, C.-N.; Ryo, H.-S.; Kim, K.-I.; So, S.-R.; Ri, C.-K.; Ri, S.-P.; Nam, K.-W.; Pak, K.-S.; Qu, Y. T. Chem. Phys. Lett. 2019, 727, 78.  doi: 10.1016/j.cplett.2019.04.061

    48. [48]

      Amin, H. M. A.; Baltruschat, H. Phys. Chem. Chem. Phys. 2017, 19, 25527.  doi: 10.1039/C7CP03914J

    49. [49]

      Bergmann, A.; Moreno, E. M.; Teschner, D.; Chernev, P.; Gliech, M.; de Araujo, J. F.; Reier, T.; Dau, H.; Strasser, P. Nat. Commun. 2015, 6, 8625.  doi: 10.1038/ncomms9625

    50. [50]

      Amin, H. M. A.; Konigshoven, P.; Hegemann, M.; Baltruschat, H. Anal. Chem. 2019, 91, 12653.  doi: 10.1021/acs.analchem.9b01749

    51. [51]

      Rizo, R.; Lázaro, M. J.; Pastor, E.; Koper, M. T. M. ChemElectroChem 2016, 3, 2196.  doi: 10.1002/celc.201600438

    52. [52]

      Wonders, A. H.; Housmans, T. H. M.; Rosca, V.; Koper, M. T. M. J. Appl. Electrochem. 2006, 36, 1215.  doi: 10.1007/s10800-006-9173-4

    53. [53]

      Clark, E. L.; Bell, A. T. J. Am. Chem. Soc. 2018, 140, 7012.  doi: 10.1021/jacs.8b04058

    54. [54]

      Möller, S.; Barwe, S.; Masa, J.; Wintrich, D.; Seisel, S.; Baltruschat, H.; Schuhmann, W. Angew. Chem. Int. Ed. 2019, 59, 1585.

    55. [55]

      Alwast, D.; Schnaidt, J.; Law, Y. T.; Behm, R. J. Electrochim. Acta 2016, 197, 290.  doi: 10.1016/j.electacta.2015.12.226

    56. [56]

      Ma, S.; Wu, Y.; Wang, J.; Zhang, Y.; Zhang, Y.; Yan, X.; Wei, Y.; Liu, P.; Wang, J.; Jiang, K.; Fan, S.; Xu, Y.; Peng, Z. Nano Lett. 2015, 15, 8084.  doi: 10.1021/acs.nanolett.5b03510

    57. [57]

      Zhou, B.; Guo, L.; Zhang, Y.; Wang, J.; Ma, L.; Zhang, W. H.; Fu, Z.; Peng, Z. Adv. Mater. 2017, 29, 30.

    58. [58]

      Sun, B.; Kretschmer, K.; Xie, X.; Munroe, P.; Peng, Z.; Wang, G. Adv. Mater. 2017, 29, 48.

    59. [59]

      Berkes, B. B.; Jozwiuk, A.; Sommer, H.; Brezesinski, T.; Janek, J. Electrochem. Commun. 2015, 60, 64.  doi: 10.1016/j.elecom.2015.08.002

    60. [60]

      Bruins, A. P. TrAC-Trend. Anal. Chem. 2015, 70, 14.  doi: 10.1016/j.trac.2015.02.016

    61. [61]

      Willms, J. A.; Gleich, H.; Schrempp, M.; Menche, D.; Engeser, M. Chem. Eur. J. 2018, 24, 2663.  doi: 10.1002/chem.201704914

    62. [62]

      Voss, J. M.; Duffy, E. M.; Marsh, B. M.; Garand, E. ChemPlusChem 2017, 82, 691.  doi: 10.1002/cplu.201700085

    63. [63]

      Cui, L.-L.; Wei, Z.-L.; Fei, Q.; Li, M. Chinese J. Anal. Chem. 2018, 47, 23.
       

    64. [64]

      Iftikhar, I.; El-Nour, K.; Mohammed, A.; Brajter-Toth, A. Electrochim. Acta 2017, 249, 145.  doi: 10.1016/j.electacta.2017.07.087

    65. [65]

      Iftikhar, I.; El-Nour, K.; Mohammed, A.; Brajter-Toth, A. Chem-ElectroChem 2018, 5, 1056.

    66. [66]

      Brivio, M.; Liesener, A.; Oosterbroek, R. E.; Verboom, W.; Karst, U.; Berg, A.; Reinhoudt, D. N. Anal. Chem. 2005, 77, 6852.  doi: 10.1021/ac050817g

    67. [67]

      Liu, S.-J.; Yu, Z.-W.; Qiao, L.; Liu, B.-H. Sci. Rep. 2017, 7, 46669.  doi: 10.1038/srep46669

    68. [68]

      Wan, Q.; Chen, S.; Badu-Tawiah, A. K. Chem. Sci. 2018, 9, 5724.  doi: 10.1039/C8SC00251G

    69. [69]

      Gary, J. V.; Baikal, F. Z. Anal. Chem. 1995, 67, 2916.  doi: 10.1021/ac00113a028

    70. [70]

      Abonnenc, M.; Qiao, L.; Liu, B.; Girault, H. H. Annu. Rev. Anal. Chem. 2010, 3, 231.  doi: 10.1146/annurev.anchem.111808.073740

    71. [71]

      Qiu, R.; Zhang, X.; Luo, H.; Shao, Y. Chem. Sci. 2016, 7, 6684.  doi: 10.1039/C6SC01978A

    72. [72]

      Gu, C.; Nie, X.; Jiang, J.; Chen, Z.; Dong, Y.; Zhang, X.; Liu, J.; Yu, Z.; Zhu, Z.; Liu, J.; Liu, X.; Shao, Y. J. Am. Chem. Soc. 2019, 141, 13212.  doi: 10.1021/jacs.9b06299

    73. [73]

      Looi, W. D.; Brown, B.; Chamand, L.; Brajter-Toth, A. Anal. BioAnal. Chem. 2016, 408, 2227.  doi: 10.1007/s00216-015-9246-5

    74. [74]

      Cheng, S.; Wu, Q.; Dewald, H. D.; Chen, H. J. Am. Soc. Mass Spectrom. 2017, 28, 1005.  doi: 10.1007/s13361-016-1450-9

    75. [75]

      Lu, M.; Liu, Y.; Helmy, R.; Martin, G. E.; Dewald, H. D.; Chen, H. J. Am. Soc. Mass Spectrom. 2015, 26, 1676.  doi: 10.1007/s13361-015-1210-2

    76. [76]

      Liu, Y.-M.; Perry, R. H. J. Am. Soc. Mass Spectrom. 2015, 26, 1702.  doi: 10.1007/s13361-015-1224-9

    77. [77]

      Brown, T. A.; Chen, H.; Zare, R. N. Angew. Chem. Int. Ed. 2015, 54, 11183.  doi: 10.1002/anie.201506316

    78. [78]

      Brown, T. A.; Chen, H.; Zare, R. N. J. Am. Chem. Soc. 2015, 137, 7274.  doi: 10.1021/jacs.5b03862

    79. [79]

      Brown, T. A.; Hosseini-Nassab, N.; Chen, H.; Zare, R. N. Chem. Sci. 2016, 7, 329.  doi: 10.1039/C5SC02939B

    80. [80]

      Cheng, H.; Yan, X.; Zare, R. N. Anal. Chem. 2017, 89, 3191.  doi: 10.1021/acs.analchem.6b05124

    81. [81]

      Khanipour, P.; Lçffler, M.; Reichert, A. M.; Haase, F. T.; Mayrhofer, Karl J. J.; Katsounaros, I. Angew. Chem. Int. Ed. 2019, 58, 7273.  doi: 10.1002/anie.201901923

    82. [82]

      Khanipour, P.; Haschke, S.; Bachmann, J.; Mayrhofer, K. J. J.; Katsounaros, I. Electrochim. Acta 2019, 315, 67.  doi: 10.1016/j.electacta.2019.05.070

    83. [83]

      Yu, K.; Zhang, H.; He, J.; Zare, R. N.; Wang, Y.; Li, L.; Li, N.; Zhang, D.; Jiang, J. Anal. Chem. 2018, 90, 7154.  doi: 10.1021/acs.analchem.8b02498

    84. [84]

      Zhang, H.; Yu, K.; Li, N.; He, J.; Qiao, L.; Li, M.; Wang, Y.; Zhang, D.; Jiang, J.; Zare, R. N. Analyst 2018, 143, 4247.  doi: 10.1039/C8AN00957K

    85. [85]

      Narayanan, R.; Basuri, P.; Jana, S. K.; Mahendranath, A.; Bose, S.; Pradeep, T. Analyst 2019, 144, 5404.  doi: 10.1039/C9AN00791A

    86. [86]

      Narayanan, R.; Sarkar, D.; Cooks, R. G.; Pradeep, T. Angew. Chem. Int. Ed. 2014, 53, 5936.  doi: 10.1002/anie.201311053

  • 加载中
    1. [1]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    2. [2]

      Cen Zhou Biqiong Hong Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086

    3. [3]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    4. [4]

      Yongjian Zhang Fangling Gao Hong Yan Keyin Ye . Electrochemical Transformation of Organosulfur Compounds. University Chemistry, 2025, 40(5): 311-317. doi: 10.12461/PKU.DXHX202407035

    5. [5]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    6. [6]

      Shuhui Li Rongxiuyuan Huang Yingming Pan . Electrochemical Synthesis of 2,5-Diphenyl-1,3,4-Oxadiazole: A Recommended Comprehensive Organic Chemistry Experiment. University Chemistry, 2025, 40(5): 357-365. doi: 10.12461/PKU.DXHX202407028

    7. [7]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    8. [8]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    9. [9]

      Lingbang Qiu Jiangmin Jiang Libo Wang Lang Bai Fei Zhou Gaoyu Zhou Quanchao Zhuang Yanhua Cui . 原位电化学阻抗谱监测长寿命热电池Nb12WO33正极材料的高温双放电机制. Acta Physico-Chimica Sinica, 2025, 41(5): 100040-. doi: 10.1016/j.actphy.2024.100040

    10. [10]

      Wei Shao Wanqun Zhang Pingping Zhu Wanqun Hu Qiang Zhou Weiwei Li Kaiping Yang Xisheng Wang . Design and Practice of Ideological and Political Cases in the Course of Instrument Analysis Experiment: Taking the GC-MS Experiment as an Example. University Chemistry, 2024, 39(2): 147-154. doi: 10.3866/PKU.DXHX202309048

    11. [11]

      Zeqiu Chen Limiao Cai Jie Guan Zhanyang Li Hao Wang Yaoguang Guo Xingtao Xu Likun Pan . 电容去离子提锂技术中电极材料的研究进展. Acta Physico-Chimica Sinica, 2025, 41(8): 100089-. doi: 10.1016/j.actphy.2025.100089

    12. [12]

      Zian Lin Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066

    13. [13]

      Yifei Cheng Jiahui Yang Wei Shao Wanqun Zhang Wanqun Hu Weiwei Li Kaiping Yang . Learning Goes Beyond the Written Word: Practical Insights from the “Leaf Electroplating” Popular Science Experiment. University Chemistry, 2024, 39(9): 319-327. doi: 10.3866/PKU.DXHX202310033

    14. [14]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    15. [15]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    16. [16]

      Kuaibing Wang Feifei Mao Weihua Zhang Bo Lv . Design and Practice of a Comprehensive Teaching Experiment for Preparing Biomass Carbon Dots from Rice Husk. University Chemistry, 2025, 40(5): 342-350. doi: 10.12461/PKU.DXHX202407042

    17. [17]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    18. [18]

      Zhongyan Cao Youzhi Xu Menghua Li Xiao Xiao Xianqiang Kong Deyun Qian . Electrochemically Driven Denitrative Borylation and Fluorosulfonylation of Nitroarenes. University Chemistry, 2025, 40(4): 277-281. doi: 10.12461/PKU.DXHX202407017

    19. [19]

      Hongbo Zhang Yihong Tang Suxia Zhang Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013

    20. [20]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

Metrics
  • PDF Downloads(32)
  • Abstract views(2369)
  • HTML views(488)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return