Citation: Zhu Ren-Yi, Liao Kui, Yu Jin-Sheng, Zhou Jian. Recent Advances in Catalytic Asymmetric Synthesis of P-Chiral Phosphine Oxides[J]. Acta Chimica Sinica, ;2020, 78(3): 193-216. doi: 10.6023/A20010002 shu

Recent Advances in Catalytic Asymmetric Synthesis of P-Chiral Phosphine Oxides

  • Corresponding author: Yu Jin-Sheng, jsyu@chem.ecnu.edu.cn Zhou Jian, jzhou@chem.ecnu.edu.cn
  • Received Date: 1 January 2020
    Available Online: 21 February 2020

    Fund Project: Project supported by the National Natural Science Foundation of China (Nos. 21725203, 21901074)the National Natural Science Foundation of China 21901074the National Natural Science Foundation of China 21725203

Figures(35)

  • P-Chiral phosphine oxides are a class of privileged structures, which have important applications in the field of medicinal chemistry, organic synthesis, life and material science. Recent years have witnessed significant progress in the catalytic asymmetric construction of such scaffolds. These advances are summarized in this review according to the following three major strategies:desymmetrization of prochiral tertiary phosphine oxides, (dynamic) kinetic resolution of tertiary phosphine oxides, and catalytic asymmetric reactions involving secondary phosphine oxides, and discusses the possible reaction mechanism, the advantage and disadvantage of each type of reactions, which would provide reference and inspiration for the researchers engaged in organic synthesis and organic phosphorus chemistry.
  • 加载中
    1. [1]

      (a) Dutartre, M.; Bayardon, J.; Jugé, S. Chem. Soc. Rev. 2016, 45, 5771. (b) Macia, E. Chem. Soc. Rev. 2005, 34, 691.

    2. [2]

      (a) Kazemi, M.; Tahmasbi, A. M.; Valizadeh, R.; Naserian, A. A.; Soni, A. Agric. Sci. Res. J. 2012, 2, 512. (b) Lamberth, C. Tetrahedron 2010, 66, 7239.

    3. [3]

      De Clercq, E. Clin. Microbiol. Rev. 2003, 16, 569.  doi: 10.1128/CMR.16.4.569-596.2003

    4. [4]

      (a) Akiyama, T. Chem. Rev. 2007, 107, 5744. (b) Milo, A.; Neel, A. J.; Toste, F. D.; Sigman, M. S. Science 2015, 347, 737.

    5. [5]

      Duffy, M. P.; Delaunay, W.; Bouit, P.-A.; Hissler, M. Chem. Soc. Rev. 2016, 45, 5296.  doi: 10.1039/C6CS00257A

    6. [6]

      Ohmaru, Y.; Sato, N.; Mizutani, M.; Kotani, S.; Sugiura, M.; Nakajima, M. Org. Biomol. Chem. 2012, 10, 4562.  doi: 10.1039/c2ob25338k

    7. [7]

      Takaya, H.; Mashima, K.; Koyano, K.; Yagi, M.; Kumobayashi, H.; Taketomi, T.; Akutagawa, S.; Noyori, R. J. Org. Chem. 1986, 51, 629.

    8. [8]

      Xu, B.; Zhu, S.-F.; Xie, X.-L, Shen, J.-J.; Zhou, Q.-L. Angew. Chem., Int. Ed. 2011, 50, 11483.  doi: 10.1002/anie.201105485

    9. [9]

      Pye, P. J.; Rossen, K.; Reamer, R. A.; Tsou, N. N.; Volante, R. P.; Reider, P. J. J. Am. Chem. Soc. 1997, 119, 6207.  doi: 10.1021/ja970654g

    10. [10]

      Schulze, C. J.; Navarro, G.; Ebert, D.; DeRisi, J.; Linington, R. G. J. Org. Chem. 2015, 80, 1312.  doi: 10.1021/jo5024409

    11. [11]

      Cholongitas, E.; Papatheodoridis, G. V. Ann. Gastroenterol. 2014, 27, 331.

    12. [12]

      Clarion, L.; Jacquard, C.; Sainte-Catherine, O.; Loiseau, S.; Filippini, D.; Hirlemann, M.-H.; Volle, J.-N.; Virieux, D.; Lecouvrey, M.; Pirat, J.-L.; Bakalara, N. J. Med. Chem. 2012, 55, 2196.  doi: 10.1021/jm201428a

    13. [13]

      (a) Baraniak, J.; Kinas, R. W.; Lesiak, K.; Stec, W. J. J. Chem. Soc. 1979, 940. (b) Dostmann, W. R. G.; Taylor, S. S.; Genieser, H.-G.; Jastorff, B.; Døskeland, S. O.; Øgreid, D. J. Biol. Chem. 1990, 265, 10484.

    14. [14]

      Matsukawa, M.; Sugama, H.; Imamoto, T. Tetrahedron Lett. 2000, 41, 6461.  doi: 10.1016/S0040-4039(00)01030-3

    15. [15]

      (a) Iseki, K.; Kuroki, Y.; Takahashi, M.; Kobayashi, Y. Tetrahedron Lett. 1996, 37, 5149. (b) Iseki, K.; Kuroki, Y.; Takahashi, M.; Kishimoto, S. Tetrahedron 1997, 53, 3513.

    16. [16]

      Xu, G.; Senanayake, C. H.; Tang, W. Acc. Chem. Res. 2019, 52, 1101.  doi: 10.1021/acs.accounts.9b00029

    17. [17]

      Selected examples using P-chiral phosphines as ligands: (a) Vineyard, B. D.; Knowles, W. S.; Sabacky, M. J.; Bachman, G. L.; Weinkauff, D. J. J. Am. Chem. Soc. 1977, 99, 5946. (b) Gridnev, I. D.; Higashi, N.; Asakura, K.; Imamoto, T. J. Am. Chem. Soc. 2000, 122, 7183. (c) Tang, W.; Zhang, X. Angew. Chem., Int. Ed. 2002, 41, 1612. (d) Taylor, A. M.; Altman, R. A.; Buchwald S. L. J. Am. Chem. Soc. 2009, 131, 9900. (e) Imamoto, T.; Tamura, K.; Zhang, Z.; Horiuchi, Y.; Sugiya, M.; Yoshida, K.; Yanagisawa, A.; Gridnev, I. D. J. Am. Chem. Soc. 2012, 134, 1754. (f) Liu, G.; Liu, X.; Cai, Z.; Jiao, G.; Xu, G.; Tang, W. Angew. Chem., Int. Ed. 2013, 52, 4235. Selected examples using P-chiral phosphine as organocatalysts: (g) Sampath, M.; Loh, T.-P. Chem. Sci. 2010, 1, 739. (h) Rémond, E.; Bayardon, J.; Takizawa, S.; Rousselin, Y.; Sasai; H.; Jugé, S. Org. Lett. 2013, 15, 1870. (i) Takizawa, S.; Rémond, E.; Arteaga, F.; Yoshida, Y.; Sridharan, V.; Bayardon, J.; Jugé, S.; Sasai, H. Chem. Commun. 2013, 49, 8392. (j) Henry, C. E.; Xu, Q.-H.; Fan, Y.-C.; Martin, T. J.; Belding, L.; Dudding, T.; Kwon, O. J. Am. Chem. Soc. 2014, 136, 11890.

    18. [18]

    19. [19]

      Selected examples for chiral resolution: see ref. 17a, and (a) Korpiun, O.; Lewis, R. A.; Chickos, J.; Mislow, K. J. Am. Chem. Soc. 1968, 90 4842. For chiral auxiliaries: (b) Berger, O.; Montchamp, J.-L. Angew. Chem., Int. Ed. 2013, 52, 11377. (c) Han, Z. S.; Goyal, N.; Herbage, M. A.; Sieber, J. D.; Qu, B.; Xu, Y.; Li, Z.; Reeves, J. T.; Desrosiers, J.-N.; Ma, S.; Grinberg, N.; Lee, H.; Mangunuru, H. P. R.; Zhang, Y.; Krishnamurthy, D.; Lu, B. Z.; Song, J. J.; Wang, G.; Senanayake, C. H. J. Am. Chem. Soc. 2013, 135, 2474. (d) Gwon, D.; Lee, D.; Kim, J.; Park, S.; Chang, S. Chem. Eur. J. 2014, 20, 12421. For asymmetric oxidation of tertiary phosphines: (e) Bergin, E.; O'Connor, C. T.; Robinson, S. B.; McGarrigle, E. M.; O'Mahony, C. P.; Gilheany, D. G. J. Am. Chem. Soc. 2007, 129 9566. (f) Rajendran, K. V.; Kennedy, L.; Gilheany, D. G. Eur. J. Org. Chem. 2010, 5642. (g) Nikitin, K.; Rajendran, K. V.; Müller-Bunz, H.; Gilheany, D. G. Angew. Chem., Int. Ed. 2014, 53, 1906.

    20. [20]

      (a) Zeng, X.-P.; Cao, Z.-Y.; Wang, Y.-H.; Zhou, F.; Zhou, J. Chem. Rev. 2016, 116, 7330. (b) Petersen, K. S. Tetrahedron Lett. 2015, 56, 6523. (c) Willis, M. C. J. Chem. Soc., Perkin Trans. 1 1999, 1765.

    21. [21]

      Nishida, G.; Noguchi, K.; Hirano, M.; Tanaka, K. Angew. Chem., Int. Ed. 2008, 47, 3410.  doi: 10.1002/anie.200800144

    22. [22]

      Zheng, Y.; Guo, L.; Zi, W. Org. Lett. 2018, 20, 7039.  doi: 10.1021/acs.orglett.8b02982

    23. [23]

      Zhang, Y.; Zhang, F.; Chen, L.; Xu, J.; Liu, X.; Feng, X. ACS Catal. 2019, 9, 4834.  doi: 10.1021/acscatal.9b00860

    24. [24]

      Zhu, R. Y.; Chen, L.; Hu, X. S.; Zhou, F.; Zhou, J. Chem. Sci. 2020, 11, 97.  doi: 10.1039/C9SC04938J

    25. [25]

      (a) Meng, J.-C.; Fokin, V. V.; Finn, M. G. Tetrahedron Lett. 2005, 46, 4543. (b) Stephenson, G. R.; Buttress, J. P.; Deschamps, D.; Lancelot, M.; Martin, J. P.; Sheldon, A. I. G.; Alayrac, C.; Gaumont, A.-C.; Page, P. C. B. Synlett 2013, 24, 2723. (c) Song, T.; Li, L.; Zhou, W.; Zheng, Z.-J.; Deng, Y.; Xu, Z.; Xu, L.-W. Chem. Eur. J. 2015, 21, 554. (d) Chen, M.-Y.; Song, T.; Zheng, Z.-J.; Xu, Z.; Cui, Y.-M.; Xu, L.-W. RSC Adv. 2016, 6, 58698. (e) Chen, M.-Y.; Xu, Z.; Chen, L.; Song, T.; Zheng, Z.-J.; Cao, J.; Cui, Y.-M., Xu, L.-W. ChemCatChem 2018, 10, 280. For achiral version: (f) Rodionov, V. O.; Fokin, V. V.; Finn, M. G. Angew. Chem., Int. Ed. 2005, 44, 2210.

    26. [26]

      (a) Worrell, B. T.; Malik, J. A.; Fokin, V. V. Science 2013, 340, 457. (b) Díez, J.; Gamasa, M. P.; Panera, M. Inorg. Chem. 2006, 45, 10043.

    27. [27]

      Zhou, F.; Tan, C.; Tang, J.; Zhang, Y.-Y.; Gao, W.-M.; Wu, H.-H.; Yu, Y.-H.; Zhou, J. J. Am. Chem. Soc. 2013, 135 10994.  doi: 10.1021/ja4066656

    28. [28]

      (a) Osako, T.; Uozumi, Y. Org. Lett. 2014, 16, 5866. (b) Osako, T.; Uozumi, Y. Synlett 2015, 26, 1475.

    29. [29]

      For reviews: (a) Ren, Y.; Baumgartner, T. Dalton Trans. 2012, 41, 7792. (b) Matano, Y.; Imahori, H. Org. Biomol. Chem. 2009, 7, 1258. For recent examples: (c) Stolar, M.; Borau-Garcia, J.; Toonen, M.; Baumgartner, T. J. Am. Chem. Soc. 2015, 137, 3366. (d) Yamaguchi, E.; Wang, C.; Fukazawa, A.; Taki, M.; Sato, Y.; Sasaki, T.; Ueda, M.; Sasaki, N.; Higashiyama, T.; Yamaguchi, S. Angew. Chem., Int. Ed. 2015, 54, 4539. (e) Reus, C.; Stolar, M.; Vanderkley, J.; Nebauer, J.; Baumgartner, T. J. Am. Chem. Soc. 2015, 137, 11710.

    30. [30]

      Tahara, Y.-K.; Sato, T.; Matsubara, R.; Kanyiva, K. S.; Shibata, T. Heterocycles 2016, 93, 685.  doi: 10.3987/COM-15-S(T)57

    31. [31]

      Harvey, J. S.; Malcolmson, S. J.; Dunne, K. S.; Meek, S. J.; Thompson, A. L.; Schrock, R. R.; Hoveyda, A. H.; Gouverneur, V. Angew. Chem., Int. Ed. 2009, 48, 762.  doi: 10.1002/anie.200805066

    32. [32]

      Wang, Z.; Hayashi. T. Angew. Chem., Int. Ed. 2018, 57, 1702.  doi: 10.1002/anie.201712572

    33. [33]

      For selected reviews on C-H bond functionalization, see: (a) Kakiuchi, F.; Murai, S. Acc. Chem. Res. 2002, 35, 826. (b) Giri, R.; Shi, B.-F.; Engle, K. M.; Maugel, N.; Yu, J.-Q. Chem. Soc. Rev. 2009, 38, 3242. (c) Xu, L.-M.; Li, B.-J.; Yang, Z.; Shi, Z.-J. Chem. Soc. Rev. 2010, 39, 712. (d) Albrecht, M. Chem. Rev. 2010, 110, 576. (e) Song, G.; Wang, F.; Li, X. Chem. Soc. Rev. 2012, 41, 3651. (f) Newton, C. G.; Wang, S.-G.; Oliveira, C. C.; Cramer, N. Chem. Rev. 2017, 117, 8908.

    34. [34]

      Du, Z.-J.; Guan, J.; Wu, G.-J.; Xu, P.; Gao, L.-X.; Han, F.-S. J. Am. Chem. Soc. 2015, 137, 632.  doi: 10.1021/ja512029x

    35. [35]

      Guan, J.; Wu, G.-J.; Han, F.-S. Chem. Eur. J. 2014, 20, 3301.  doi: 10.1002/chem.201303056

    36. [36]

      (a) Shi, B.-F.; Maugel, N.; Zhang, Y.-H.; Yu, J.-Q. Angew. Chem., Int. Ed. 2008, 47, 4882. (b) Shi, B.-F.; Zhang, Y.-H.; Lam, J.-K.; Wang, D.-H.; Yu, J.-Q. J. Am. Chem. Soc. 2010, 132, 460. (c) Yang, Y.-F.; Hong, X.; Yu, J.-Q.; Houk, K. N. Acc. Chem. Res. 2017, 50, 2853.

    37. [37]

      Sun, Y.; Cramer, N. Angew. Chem., Int. Ed. 2017, 56, 364.  doi: 10.1002/anie.201606637

    38. [38]

      Gwon, D.; Park, S.; Chang, S. Tetrahedron 2015, 71, 4504.  doi: 10.1016/j.tet.2015.02.065

    39. [39]

      Jang, Y.-S.; Dieckmann, M.; Cramer, N. Angew. Chem., Int. Ed. 2017, 56, 15088.

    40. [40]

      Jang, Y.-S.; Woźniak, Ł.; Pedroni, J.; Cramer, N. Angew. Chem., Int. Ed. 2018, 57, 12901.  doi: 10.1002/anie.201807749

    41. [41]

      Lin, Z.-Q.; Wang, W.-Z.; Yan, S.-B.; Duan, W.-L. Angew. Chem., Int. Ed. 2015, 54, 6265.  doi: 10.1002/anie.201500201

    42. [42]

      Liu, L.; Zhang, A.-A.; Wang, Y.; Zhang, F.; Zuo, Z.; Zhao, W.-X.; Feng, C.-L.; Ma, W. Org. Lett. 2015, 17, 2046.  doi: 10.1021/acs.orglett.5b00122

    43. [43]

      Lin, Y.; Ma, W.-Y.; Sun, Q.-Y.; Cui, Y.-M.; Xu, L.-W. Synlett 2017, 28, 1432.  doi: 10.1055/s-0036-1588983

    44. [44]

      Li, Z.; Lin, Z.-Q.; Yan, C.-G.; Duan, W.-L. Organometallics 2019, 38, 3916.  doi: 10.1021/acs.organomet.9b00216

    45. [45]

      Xu, G. Q.; Li, M. H.; Wang, S. L.; Tang, W. J. Org. Chem. Front. 2015, 2, 1342.  doi: 10.1039/C5QO00142K

    46. [46]

      Huang, Z.; Huang, X.; Li, B.; Mou, C.; Yang, S.; Song, B.-A.; Chi, Y. R. J. Am. Chem. Soc. 2016, 138, 7524.  doi: 10.1021/jacs.6b04624

    47. [47]

      Yang, G.-H.; Li, Y.; Li, X.; Cheng, J.-P. Chem. Sci. 2019, 10, 4322.

    48. [48]

      Toda, Y.; Pink, M.; Johnston, J. N. J. Am. Chem. Soc. 2014, 136, 14734.  doi: 10.1021/ja5088584

    49. [49]

      Dobish, M. C.; Johnston, J. N. J. Am. Chem. Soc. 2011, 134, 6068.

    50. [50]

      Trost, B. M.; Spohr, S. M.; Rolka, A. B.; Kalnmals, C. A. J. Am. Chem. Soc. 2019, 141, 14098.  doi: 10.1021/jacs.9b07340

    51. [51]

      Liu, S.; Zhang, Z. F.; Xie, F.; Butt, N. A.; Sun, L.; Zhang, W. B. Tetrahedron Asymmetry 2012, 23, 329.  doi: 10.1016/j.tetasy.2012.02.018

    52. [52]

      Sun, Y.; Cramer, N. Chem. Sci. 2018, 9, 2981.  doi: 10.1039/C7SC05411D

    53. [53]

      Lim, K. M.-H.; Hayashi, T. J. Am. Chem. Soc. 2017, 139, 8122.  doi: 10.1021/jacs.7b04570

    54. [54]

      Emmick, T. L.; Letsinger, R. L. J. Am. Chem. Soc. 1968, 90, 3459.  doi: 10.1021/ja01015a030

    55. [55]

      Fu, X.; Loh, W.-T.; Zhang, Y.; Chen, T.; Ma, T.; Liu, H.; Wang, J.; Tan, C.-H. Angew. Chem., Int. Ed. 2009, 48, 7387.  doi: 10.1002/anie.200903971

    56. [56]

      Xie, P. Z.; Guo, L.; Xu, L. L.; Loh, T.-P. Chem. Asian J. 2016, 11, 1353.  doi: 10.1002/asia.201600108

    57. [57]

      (a) Zhang, H.; Sun, Y.-M.; Yao, L.; Ji, S.-Y.; Zhao, C.-Q.; Han, L.-B. Chem. Asian J. 2014, 9, 1329. (b) Wang, J.-P.; Nie, S.-Z.; Zhou, Z.-Y.; Ye, J.-J.; Wen, J.-H.; Zhao, C.-Q. J. Org. Chem. 2016, 81, 7644.

    58. [58]

      Du, J.-Y.; Ma, Y.-H.; Yuan, R.-Q.; Xin, N. N.; Nie, S.-Z.; Ma, C.-L.; Li, C.-Z.; Zhao, C.-Q. Org. Lett. 2018, 20, 477.  doi: 10.1021/acs.orglett.7b03863

    59. [59]

      Beaud, R.; Phipps, R. J.; Gaunt, M. J. J. Am. Chem. Soc. 2016, 138, 13183.  doi: 10.1021/jacs.6b09334

    60. [60]

      Zhang, Y.; He, H.; Wang, Q. Y.; Cai, Q. Tetrahedron Lett. 2016, 57, 5308.  doi: 10.1016/j.tetlet.2016.10.048

    61. [61]

      Dai, Q.; Li, W.-B.; Li, Z.-M.; Zhang, J.-L. J. Am. Chem. Soc. 2019, 141, 20556.  doi: 10.1021/jacs.9b11938

    62. [62]

      Liu, X.-T.; Zhang, Y.-Q.; Han, X.-Y.; Sun, S.-P.; Zhang, Q.-W. J. Am. Chem. Soc. 2019, 141, 16584.  doi: 10.1021/jacs.9b08734

  • 加载中
    1. [1]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    2. [2]

      Qianwen HanTenglong ZhuQiuqiu LüMahong YuQin Zhong . Performance and Electrochemical Asymmetry Optimization of Hydrogen Electrode Supported Reversible Solid Oxide Cell. Acta Physico-Chimica Sinica, 2025, 41(1): 100005-0. doi: 10.3866/PKU.WHXB202309037

    3. [3]

      Guilan He Yaofeng Yuan . 手性二茂铁双膦配体Xyliphos的合成及应用. University Chemistry, 2025, 40(8): 130-137. doi: 10.12461/PKU.DXHX202409122

    4. [4]

      Ye WangRuixiang GeXiang LiuJing LiHaohong Duan . An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol. Acta Physico-Chimica Sinica, 2024, 40(7): 2307019-0. doi: 10.3866/PKU.WHXB202307019

    5. [5]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    6. [6]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    7. [7]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    8. [8]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    9. [9]

      Xiaofeng ZhuBingbing XiaoJiaxin SuShuai WangQingran ZhangJun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-0. doi: 10.3866/PKU.WHXB202407005

    10. [10]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    11. [11]

      Xin HanZhihao ChengJinfeng ZhangJie LiuCheng ZhongWenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 2404023-0. doi: 10.3866/PKU.WHXB202404023

    12. [12]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    13. [13]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    14. [14]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    15. [15]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    16. [16]

      Wang WangYucheng LiuShengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059

    17. [17]

      Shijie RenMingze GaoRui-Ting GaoLei Wang . Bimetallic Oxyhydroxide Cocatalyst Derived from CoFe MOF for Stable Solar Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(7): 2307040-0. doi: 10.3866/PKU.WHXB202307040

    18. [18]

      Linjie ZHUXufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416

    19. [19]

      Xueyu LinRuiqi WangWujie DongFuqiang Huang . Rational Design of Bimetallic Oxide Anodes for Superior Li+ Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-0. doi: 10.3866/PKU.WHXB202311005

    20. [20]

      Jichao XUMing HUXichang CHENChunhui WANGLeichen WANGLingyi ZHOUXing HEXiamin CHENGSu JING . Construction and hydrogen peroxide-activated chemodynamic activity of ferrocene?benzoselenadiazole conjugate. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1495-1504. doi: 10.11862/CJIC.20250144

Metrics
  • PDF Downloads(226)
  • Abstract views(5831)
  • HTML views(1620)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return