Citation: Liu Jianguo, Zhang Mingyue, Wang Nan, Wang Chenguang, Ma Longlong. Research Progress of Covalent Organic Framework Materials in Catalysis[J]. Acta Chimica Sinica, ;2020, 78(4): 311-325. doi: 10.6023/A19120426 shu

Research Progress of Covalent Organic Framework Materials in Catalysis

  • Corresponding author: Liu Jianguo, liujg@ms.giec.ac.cn Ma Longlong, mall@ms.giec.ac.cn
  • Received Date: 14 December 2019
    Available Online: 8 April 2020

    Fund Project: the National Natural Science Foundation of China 51976225Project supported by the National Natural Science Foundation of China (No. 51976225) and Dalian National Laboratory for Clean Energy Cooperation Fund, Chinese Academy of Sciences (No. DNL201916)Dalian National Laboratory for Clean Energy Cooperation Fund, Chinese Academy of Sciences DNL201916

Figures(20)

  • Covalent organic framework materials (COFs) are a class of organic porous materials with large specific surface area, high porosity and crystallinity. Owning to their special nature of functional versatility and easy modification, COFs can be designed to be efficient catalysts either embed functional active sites into the skeleton through a "top-down" strategy, or load metal nanoparticles into the framework via a post-modification approach. These studies have laid the foundation for the extension of COF's application in heterogeneous and other catalytic fields. The synthetic strategy and application of COF in different types of catalytic reactions are reviewed in this paper. Moreover, the current research situation of COF catalyst is summarized and prospected. Finally, the remaining challenges in this field are also indicated.
  • 加载中
    1. [1]

      Feng, X.; Ding, X.; Jiang, D. L. Chem. Soc. Rev. 2012, 41, 6010.  doi: 10.1039/c2cs35157a

    2. [2]

      Segura, J. L.; Mancheno, M. J.; Zamora, F. Chem. Soc. Rev. 2016, 45, 5635.  doi: 10.1039/C5CS00878F

    3. [3]

      Song, J. R.; Huang, Z. T.; Zheng, Q. Y. Chin. J. Chem. 2013, 31, 577.  doi: 10.1002/cjoc.201300138

    4. [4]

      Li, Z. P.; Feng, X.; Zou, Y. C.; Zhang, Y. W.; Xia, H.; Liu, X. M.; Mu, Y. Chem. Commun. 2014, 50, 13825.  doi: 10.1039/C4CC05665E

    5. [5]

      Huang, N.; Chen, X.; Krishna, R.; Jiang, D. L. Angew. Chem. Int. Ed. 2015, 54, 2986.  doi: 10.1002/anie.201411262

    6. [6]

      Zhao, Y. F.; Yao, K. X.; Teng, B. Y.; Zhang, T.; Han, Y. Energ. Environ. Sci. 2013, 6, 3684.  doi: 10.1039/c3ee42548g

    7. [7]

      Wang, P. Y.; Kang, M. M.; Sun, S. M.; Liu, Q.; Zhang, Z. H.; Fang, S. M. Chin. J. Chem. 2014, 32, 838.  doi: 10.1002/cjoc.201400260

    8. [8]

      Feng, X.; Liu, L.; Honsho, Y.; Saeki, A.; Seki, S.; Irle, S.; Dong, Y.; Nagai, A.; Jiang, D. L. Angew. Chem. Int. Ed. 2012, 51, 2618.  doi: 10.1002/anie.201106203

    9. [9]

      Wang, J. H.; Zhang, Y.; An, L. C.; Wang, W. H.; Zhang, Y. H.; Bu, X. H. Chin. J. Chem. 2018, 36, 826.  doi: 10.1002/cjoc.201800142

    10. [10]

      Yang, T.; Cui, Y. N.; Chen, H. Y.; Li, W. H. Acta Chim. Sinica 2017, 75, 339.
       

    11. [11]

      Peng, Z. K.; Ding, H. M.; Chen, R. F.; Gao, C.; Wang, C. Acta Chim. Sinica 2019, 77, 681.
       

    12. [12]

      He, Q.; Zhang, C.; Li, X.; Wang, X.; Mu, P.; Jiang, J. X. Acta Chim. Sinica 2018, 76, 202.
       

    13. [13]

      Zhang, S. X; Shao, X. F. Acta Chim. Sinica 2018, 76, 531.  doi: 10.3866/PKU.WHXB201805231
       

    14. [14]

      Liu, X. G.; Huang, D. L.; Lai, C.; Zeng, G. M.; Qin, L.; Wang, H.; Yi, H.; Li, B. S.; Liu, S. Y.; Zhang, M. M.; Deng, R.; Fu, Y. K.; Li, L.; Xue, W. J.; Chen, S. Chem. Soc. Rev. 2019, 48, 5266.  doi: 10.1039/C9CS00299E

    15. [15]

      Pang, C. M.; Luo, S. H.; Hao, Z. F.; Gao, J.; Huang, Z. H.; Yu, J. H.; Yu, S. M.; Wang, Z. Y. Chin. J. Org. Chem. 2018, 38, 2606.

    16. [16]

      Davankov, V.; Tsyurupa, M. React. Polym. 1990, 13, 27.  doi: 10.1016/0923-1137(90)90038-6

    17. [17]

      Rojas, A.; Arteaga, O.; Kahr, B.; Camblor, M. A. J. Am. Chem. Soc. 2013, 135, 11975.  doi: 10.1021/ja405088c

    18. [18]

      Zhang, Y. D.; Zhu, Y. L.; Guo, J.; Gu, S.; Wang, Y. Y.; Fu, Y.; Chen, D. Y.; Lin, Y. J.; Yu, G. P.; Pan, C. Y. Phys. Chem. Chem. Phys. 2016, 18, 11323.  doi: 10.1039/C6CP00981F

    19. [19]

      Xu, S. J.; Luo, Y. L.; Tan, B. E. Macromol. Rapid Commun. 2013, 34, 471.  doi: 10.1002/marc.201200788

    20. [20]

      Wood, C. D.; Tan, B.; Trewin, A.; Su, F.; Rosseinsky, M. J.; Bradshaw, D.; Sun, Y.; Zhou, L.; Cooper, A. I. Adv. Mater. 2008, 20, 1916.  doi: 10.1002/adma.200702397

    21. [21]

      McKeown, N. B.; Budd, P. M. Chem. Soc. Rev. 2006, 35, 675.  doi: 10.1039/b600349d

    22. [22]

      Kaushik, M.; Basu, K.; Benoit, C.; Cirtiu, C. M.; Vali, H.; Moores, A. J. Am. Chem. Soc. 2015, 137, 6124.  doi: 10.1021/jacs.5b02034

    23. [23]

      MacLean, M. W.; Reid, L. M.; Wu, X.; Crudden, C. M. Chem. Asian. J. 2015, 10, 70.  doi: 10.1002/asia.201402682

    24. [24]

      Jiang, J. X.; Trewin, A.; Adams, D. J.; Cooper, A. I. Chem. Sci. 2011, 2, 1777.  doi: 10.1039/c1sc00329a

    25. [25]

      Kuhn, P.; Antonietti, M.; Thomas, A. Angew. Chem. Int. Ed. 2008, 47, 3450.  doi: 10.1002/anie.200705710

    26. [26]

      Bojdys, M. J.; Jeromenok, J.; Thomas, A.; Antonietti, M. Adv. Mater. 2010, 22, 2202.  doi: 10.1002/adma.200903436

    27. [27]

      Ren, S.; Bojdys, M. J.; Dawson, R.; Laybourn, A.; Khimyak, Y. Z.; Adams, D. J.; Cooper, A. I. Adv. Mater. 2012, 24, 2357.  doi: 10.1002/adma.201200751

    28. [28]

      Ranganathan, A.; Heisen, B. C.; Dix, I.; Meyer, F. Chem. Commun. 2007, 3637.

    29. [29]

      Ben, T.; Ren, H.; Ma, S. Q.; Cao, D. P.; Lan, J. H.; Jing, X. F.; Wang, W. C.; Xu, J.; Deng, F.; Simmons, J. M. Angew. Chem. Int. Ed. 2009, 48, 9457.  doi: 10.1002/anie.200904637

    30. [30]

      Ben, T.; Qiu, S. L. CrystEngComm 2013, 15, 17.  doi: 10.1039/C2CE25409C

    31. [31]

      Ben, T.; Pei, C. Y.; Zhang, D. L.; Xu, J.; Deng, F.; Jing, X. F.; Qiu, S. L. Energy Environ. Sci. 2011, 4, 3991.  doi: 10.1039/c1ee01222c

    32. [32]

      Yu, J. H.; Xu, R. R. J. Mater. Chem. 2008, 18, 4021.  doi: 10.1039/b804136a

    33. [33]

      Morris, R. E.; Bu, X. Nat. Chem. 2010, 2, 353.  doi: 10.1038/nchem.628

    34. [34]

      Fu, X. B.; Yu, G. P. Prog. Chem. 2016, 28, 1006.

    35. [35]

      Hu, H.; Yan, Q. Q.; Ge, R. L.; Gao, Y. A. Chinese J. Catal. 2018, 39, 1167.

    36. [36]

      Li, Y. W.; Yang, R. T. AIChE J. 2008, 54, 269.  doi: 10.1002/aic.11362

    37. [37]

      Spitler, E. L.; Colson, J. W.; Uribe-Romo, F. J.; Woll, A. R.; Giovino, M. R.; Saldivar, A.; Dichtel, W. R. Angew. Chem. Int. Ed. 2012, 51, 2623.  doi: 10.1002/anie.201107070

    38. [38]

      Wang, T.; Xue, R.; Wei, Y. L.; Wang, M. Y.; Guo, H.; Yang, W. Prog. Chem. 2018, 30, 753.

    39. [39]

      Côté, A.; Benin, A.; Ockwig, N.; O'keeffe, M.; Matzger, A.; Yaghi, O. Chem. Mater. 2006, 18, 5296.  doi: 10.1021/cm061177g

    40. [40]

      Ding, S. Y.; Gao, J.; Wang, Q.; Zhang, Y.; Song, W. G.; Su, C. Y.; Wang, W. J. Am. Chem. Soc. 2011, 133, 19816.  doi: 10.1021/ja206846p

    41. [41]

      Ma, H. C.; Kan, J. L.; Chen, G. J.; Chen, C. X.; Dong, Y. B. Chem. Mater. 2017, 29, 6518.  doi: 10.1021/acs.chemmater.7b02131

    42. [42]

      Bhadra, M.; Sasmal, H. S.; Basu, A.; Midya, S. P.; Kandambeth, S.; Pachfule, P.; Balaraman, E.; Banerjee, R. ACS Appl. Mater. Interfaces 2017, 9, 13785.  doi: 10.1021/acsami.7b02355

    43. [43]

      Li, Y.; Chen, W. B.; Gao, R. D.; Zhao, Z. Q.; Zhang, T.; Xing, G. L.; Chen, L. Chem. Commun. 2019, 55, 14538.  doi: 10.1039/C9CC07500C

    44. [44]

      Han, X.; Xia, Q. C.; Huang, J. J.; Liu, Y.; Tan, C. X.; Cui, Y. J. Am. Chem. Soc. 2017, 139, 8693.  doi: 10.1021/jacs.7b04008

    45. [45]

      Lyu, H.; Diercks, C. S.; Zhu, C.; Yaghi, O. M. J. Am. Chem. Soc. 2019, 141, 6848.  doi: 10.1021/jacs.9b02848

    46. [46]

      Mullangi, D.; Chakraborty, D.; Pradeep, A.; Koshti, V.; Vinod, C. P.; Panja, S.; Nair, S.; Vaidhyanathan, R. Small 2018, 14, e1801233.  doi: 10.1002/smll.201801233

    47. [47]

      Mu, M. M.; Wang, Y. W.; Qin, Y. T.; Yan, X. L.; Li, Y.; Chen, L. G. ACS Appl. Mater. Interfaces 2017, 9, 22856.  doi: 10.1021/acsami.7b05870

    48. [48]

      Vardhan, H.; Verma, G.; Ramani, S.; Nafady, A.; Al-Enizi, A. M.; Pan, Y.; Yang, Z.; Yang, H.; Ma, S. ACS Appl. Mater. Interfaces 2019, 11, 3070.  doi: 10.1021/acsami.8b19352

    49. [49]

      Li, X.; Wang, Z. F.; Sun, J. X.; Gao, J.; Zhao, Y.; Cheng, P.; Aguila, B.; Ma, S. Q.; Chen, Y.; Zhang, Z. J. Chem. Commun. 2019, 55, 5423.  doi: 10.1039/C9CC01317B

    50. [50]

      Zhang, J.; Han, X.; Wu, X. W.; Liu, Y.; Cui, Y. ACS Sustainable Chem. Eng. 2019, 7, 5065.  doi: 10.1021/acssuschemeng.8b05887

    51. [51]

      Vardhan, H.; Hou, L.; Yee, E.; Nafady, A.; Al-Abdrabalnabi, M. A.; Al-Enizi, A. M.; Pan, Y.; Yang, Z.; Ma, S. ACS Sustainable Chem. Eng. 2019, 7, 4878.  doi: 10.1021/acssuschemeng.8b05373

    52. [52]

      Puthiaraj, P.; Pitchumani, K. Chemistry 2014, 20, 8761.  doi: 10.1002/chem.201402365

    53. [53]

      Dong, B.; Wang, L. Y.; Zhao, S.; Ge, R.; Song, X. D.; Wang, Y.; Gao, Y. N. Chem. Commun. 2016, 52, 7082.  doi: 10.1039/C6CC03058K

    54. [54]

      Lan, X. W.; Du, C.; Cao, L. L.; She, T. T.; Li, Y. M.; Bai, G. Y. ACS Appl. Mater. Interfaces 2018, 10, 38953.  doi: 10.1021/acsami.8b14743

    55. [55]

      Zhong, W. F.; Sa, R. J.; Li, L. Y.; He, Y. J.; Li, L. Y.; Bi, J. H.; Zhuang, Z. Y.; Yu, Y.; Zou, Z. G. J. Am. Chem. Soc. 2019, 141, 7615.  doi: 10.1021/jacs.9b02997

    56. [56]

      Bhadra, M.; Kandambeth, S.; Sahoo, M. K.; Addicoat, M.; Balaraman, E.; Banerjee, R. J. Am. Chem. Soc. 2019, 141, 6152.  doi: 10.1021/jacs.9b01891

    57. [57]

      Chen, R. F.; Shi, J. L.; Ma, Y.; Lin, G. Q.; Lang, X. J.; Wang, C. Angew. Chem. Int. Ed. 2019, 58, 6430.  doi: 10.1002/anie.201902543

    58. [58]

      Huang, W.; Li, Y. G. Chin. J. Chem. 2019, 37, 1291.  doi: 10.1002/cjoc.201900375

    59. [59]

      Banerjee, T.; Haase, F.; Savasci, G.; Gottschling, K.; Ochsenfeld, C.; Lotsch, B. V. J. Am. Chem. Soc. 2017, 139, 16228.  doi: 10.1021/jacs.7b07489

    60. [60]

      Vyas, V. S.; Haase, F.; Stegbauer, L.; Savasci, G.; Podjaski, F.; Ochsenfeld, C.; Lotsch, B. V. Nat. Commun. 2015, 6, 1.

    61. [61]

      Wang, X. Y.; Chen, L. J.; Chong, S. Y.; Little, M. A.; Wu, Y.; Zhu, W. H.; Clowes, R.; Yan, Y.; Zwijnenburg, M. A.; Sprick, R. S.; Cooper, A. I. Nat. Chem. 2018, 10, 1180.  doi: 10.1038/s41557-018-0141-5

    62. [62]

      Biswal, B. P.; Vignolo-Gonzalez, H. A.; Banerjee, T.; Grunenberg, L.; Savasci, G.; Gottschling, K.; Nuss, J.; Ochsenfeld, C.; Lotsch, B. V. J. Am. Chem. Soc. 2019, 141, 11082  doi: 10.1021/jacs.9b03243

  • 加载中
    1. [1]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    2. [2]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    3. [3]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    4. [4]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    5. [5]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    6. [6]

      Xuejie WangGuoqing CuiCongkai WangYang YangGuiyuan JiangChunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044

    7. [7]

      Lewang YuanYaoyao PengZong-Jie GuanYu Fang . Insights into the development of 2D covalent organic frameworks as photocatalysts in organic synthesis. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-0. doi: 10.1016/j.actphy.2025.100086

    8. [8]

      Zhaoyu WenNa HanYanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001

    9. [9]

      Wenxiu YangJinfeng ZhangQuanlong XuYun YangLijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-0. doi: 10.3866/PKU.WHXB202312014

    10. [10]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    11. [11]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    12. [12]

      Zhifang SUZongjie GUANYu FANG . Process of electrocatalytic synthesis of small molecule substances by porous framework materials. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2373-2395. doi: 10.11862/CJIC.20240290

    13. [13]

      Wei Li Jinfan Xu Yongjun Zhang Ying Guan . 共价有机框架整体材料的制备及食品安全非靶向筛查应用——推荐一个仪器分析综合化学实验. University Chemistry, 2025, 40(6): 276-285. doi: 10.12461/PKU.DXHX202406013

    14. [14]

      Wei SunYongjing WangKun XiangSaishuai BaiHaitao WangJing ZouArramelJizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015

    15. [15]

      Xiaofang DONGYue YANGShen WANGXiaofang HAOYuxia WANGPeng CHENG . Research progress of conductive metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 14-34. doi: 10.11862/CJIC.20240388

    16. [16]

      Jingping LiSuding YanJiaxi WuQiang ChengKai Wang . Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4. Acta Physico-Chimica Sinica, 2025, 41(9): 100104-0. doi: 10.1016/j.actphy.2025.100104

    17. [17]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    18. [18]

      Haoyu SunDun LiYuanyuan MinYingying WangYanyun MaYiqun ZhengHongwen Huang . Hierarchical Palladium-Copper-Silver Porous Nanoflowers as Efficient Electrocatalysts for CO2 Reduction to C2+ Products. Acta Physico-Chimica Sinica, 2024, 40(6): 2307007-0. doi: 10.3866/PKU.WHXB202307007

    19. [19]

      Fangxuan LiuZiyan LiuGuowei ZhouTingting GaoWenyu LiuBin Sun . 中空结构光催化剂. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-0. doi: 10.1016/j.actphy.2025.100071

    20. [20]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

Metrics
  • PDF Downloads(224)
  • Abstract views(7012)
  • HTML views(2838)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return