Citation: Ma Yun, Chen Kexin, Guo Zeling, Liu Shujuan, Zhao Qiang, Wong Wai-Yeung. Phosphorescent Soft Salt Complexes for Optoelectronic Applications[J]. Acta Chimica Sinica, ;2020, 78(1): 23-33. doi: 10.6023/A19110407 shu

Phosphorescent Soft Salt Complexes for Optoelectronic Applications

  • Corresponding author: Zhao Qiang, iamqzhao@njupt.edu.cn Wong Wai-Yeung, wai-yeung.wong@polyu.edu.hk
  • Received Date: 15 November 2019
    Available Online: 18 January 2019

    Fund Project: the National Natural Science Foundation of China 51873176the Hong Kong Research Grants Council PolyU 153062/18Pthe National Natural Science Foundation of China 61825503Project supported by the National Natural Science Foundation of China (Nos. 51873176, 21701087, 61825503), the Hong Kong Research Grants Council (PolyU 153062/18P and C6009-17G), the Hong Kong Polytechnic University (1-ZE1C) and Ms Clarea Au for the Endowed Professorship in Energy (847S)the National Natural Science Foundation of China 21701087the Hong Kong Research Grants Council C6009-17Gthe Hong Kong Polytechnic University 1-ZE1CMs Clarea Au for the Endowed Professorship in Energy 847S

Figures(10)

  • Phosphorescent ion-paired complexes, which consist of two oppositely charged transition metal complexes with excellent photophysical properties, are called "soft salts" because of the soft nature of the ions. In recent decades, phosphorescent soft salt complexes have gained an increasing attention and this review aims to summarize the syntheses and photophysical properties of those complexes, and recent advances of them in different optoelectronic applications. Generally, phosphorescent soft salt complexes are synthesized via salt metathesis reactions between two oppositely charged organometallic components. By changing the chemical structure of ligands or the metal centers of the different ionic complexes, the photophysical properties of soft salt complexes can be easily regulated. Moreover, most of the soft salt complexes show concentration-dependent photoluminescence (PL) spectra due to the energy transfer between positive and negative ions. Thus, white light emission can be obtained by dissolving ion-paired complex consisting of two ionic components with blue and yellow emission in solution at certain concentration. Considering the excellent photophysical properties and easy tunability of phosphorescent soft salt complexes, the application of them in diverse optoelectronic fields, such as organic light emitting diodes, bioimaging, photodynamic therapy, electrochromic luminescence devices, and so on, have been explored. For example, Thompson and co-workers utilized iridium(Ⅲ) complexes based phosphorescent soft salts to fabricate organic light emitting diodes for the first time. Our group have first developed soft salts based phosphorescent probes for ratiometric and lifetime imaging of pH and oxygen changes in living cells. In addition, we have found that soft salt complexes showed an enhanced singlet oxygen generation rate due to the efficient energy transfer between two ionic components, which has great potential to act as a photosensitizer for photodynamic therapy of cancer cells. Huang and co-workers have proposed a new strategy to design electrochromic luminescence materials based on soft salt complexes, which display tunable and reversible electrochromic luminescence. In summary, phosphorescent soft salt complexes possessing excellent photophysical properties show great potential in diverse optoelectronic applications.
  • 加载中
    1. [1]

      Abd-El-Aziz, A. S.; Agatemor, C.; Wong, W. Y. Macromolecules Incorporating Transition Metals, Vol. 27, Royal Society of Chemistry, London, United Kingdom, 2018.  doi: 10.1039/9781788010368

    2. [2]

      Zhou, G. J.; Wong, W. Y. Chem. Soc. Rev. 2011, 40, 2541.  doi: 10.1039/c0cs00094a

    3. [3]

      Köhler, A.; Wilson, J. S.; Friend, R. H. Adv. Mater. 2002, 14, 701.  doi: 10.1002/1521-4095(20020517)14:10<701::AID-ADMA701>3.0.CO;2-4

    4. [4]

      Xu, G. T.; Li, J.; Chen, Z. N. Acta Chim. Sinica 2014, 72, 667.
       

    5. [5]

      Wang, L. H.; Guo, J. F.; Li, Y. J.; Su, Y. R.; Liu, J. W.; Li, Y. H.; Wang, S.; Shimada, S.; Huang, W. Chinese J. Chem. 2017, 35, 507.  doi: 10.1002/cjoc.201600666

    6. [6]

      Chen, Z. Q.; Bian, Z. Q.; Huang, C. H. Adv. Mater. 2010, 22, 1534.  doi: 10.1002/adma.200903233

    7. [7]

      Huang, T.; Jiang, W.; Duan, L. J. Mater. Chem. C 2018, 6, 5577.  doi: 10.1039/C8TC01139G

    8. [8]

      Chou, P. T.; Chi, Y. Chem. Eur. J. 2007, 13, 380.  doi: 10.1002/chem.200601272

    9. [9]

      Chow, P. K.; Cheng, G.; Tong, G. S. M.; To, W. P.; Kwong, W. L.; Low, K. H.; Kwok, C. C.; Ma, C. S.; Che, C. M. Angew. Chem., Int. Ed. 2015, 54, 2084.  doi: 10.1002/anie.201408940

    10. [10]

      Ma, Y.; Shen, L.; She, P. F.; Hou, Y. Q.; Yu, Y. X.; Zhao, J. Z. Adv. Optical Mater. 2019, 1801657.

    11. [11]

      Zhang, K. Y.; Yu, Q.; Wei, H. J.; Liu, S. J.; Zhao, Q.; Huang, W. Chem. Rev. 2018, 118, 1770.  doi: 10.1021/acs.chemrev.7b00425

    12. [12]

      Martir, D. R.; Zysman-Colman, E. Coord. Chem. Rev. 2018, 364, 86.  doi: 10.1016/j.ccr.2018.03.016

    13. [13]

      Ma, D.; Duan, L.; Wei, Y.; He, L.; Wang, L.; Qiu, Y. Chem. Commun. 2014, 50, 530.  doi: 10.1039/C3CC47362G

    14. [14]

      Zhang, K. Y.; Chen, X.; Sun, G.; Zhang, T.; Liu, S.; Zhao, Q.; Huang, W. Adv. Mater. 2016, 28, 7137.  doi: 10.1002/adma.201601978

    15. [15]

      Zhao, Q.; Li, F.; Huang, C. Chem. Soc. Rev. 2010, 39, 3007.  doi: 10.1039/b915340c

    16. [16]

      Chen, X. L.; Yu, R.; Zhang, Q. K.; Zhou, L. J.; Wu, X. Y.; Zhang, Q.; Lu, C. Z. Chem. Mater. 2013, 25, 3910  doi: 10.1021/cm4024309

    17. [17]

      Zhang, K. Y.; Liu, H. W.; Tang, M. C.; Choi, A. W. T.; Zhu, N.; Wei, X. G.; Lo, K. K. W. Inorg. Chem. 2015, 54, 6582.  doi: 10.1021/acs.inorgchem.5b00944

    18. [18]

      Liu, J.; Yee, K. K.; Lo, K. K. W.; Zhang, K. Y.; To, W. P.; Che, C. M.; Xu, Z. J. Am. Chem. Soc. 2014, 136, 2818.  doi: 10.1021/ja411067a

    19. [19]

      Housecroft, C. E.; Constable, E. C. Coord. Chem. Rev. 2017, 350, 155.  doi: 10.1016/j.ccr.2017.06.016

    20. [20]

      Chen, G. Y.; Chang, B. R.; Shih, T. A.; Lin, C. H.; Lo, C. L.; Chen, Y. Z.; Yang, Z. P. Chem. Eur. J. 2019, 25, 5489.  doi: 10.1002/chem.201805902

    21. [21]

      Xie, Z.; Ma, L.; de Krafft, K. E.; Jin, A.; Lin, W. J. Am. Chem. Soc. 2010, 132, 922.  doi: 10.1021/ja909629f

    22. [22]

      You, Y.; Lee, S.; Kim, T.; Ohkubo, K.; Chae, W. S.; Fukuzumi, S.; Lippard, S. J. Am. Chem. Soc. 2011, 133, 18328.  doi: 10.1021/ja207163r

    23. [23]

      Wu, C.; Chen, H. F.; Wong, K. T.; Thompson, M. E. J. Am. Chem. Soc. 2009, 132, 3133.

    24. [24]

      Mauro, M.; Schuermann, K. C.; Prétôt, R.; Hafner, A.; Mercandelli, P.; Sironi, A.; De Cola, L. Angew. Chem., Int. Ed. 2010, 49, 1222.  doi: 10.1002/anie.200905713

    25. [25]

      Ionescu, A.; Szerb, E. I.; Yadav, Y. J.; Talarico, A. M.; Ghedini, M.; Godbert, N. Dalton Trans. 2014, 43, 784.  doi: 10.1039/C3DT52077C

    26. [26]

      Fiorini, V.; D'Ignazio, A.; Magee, K. D.; Ogden, M. I.; Massi, M.; Stagni, S. Dalton Trans. 2016, 45, 3256.  doi: 10.1039/C5DT04958J

    27. [27]

      Sandroni, M.; Zysman-Colman, E. Dalton Trans. 2014, 43, 3676.  doi: 10.1039/c3dt53170h

    28. [28]

      Ho, C. L.; Wong, W. Y. Coord. Chem. Rev. 2013, 257, 1614.  doi: 10.1016/j.ccr.2012.08.023

    29. [29]

      Fan, C.; Yang, C. Chem. Soc. Rev. 2014, 43, 6439.  doi: 10.1039/C4CS00110A

    30. [30]

      Lee, J.; Chen, H. F.; Batagoda, T.; Coburn, C.; Djurovich, P. I.; Thompson, M. E.; Forrest, S. R. Nat. Mater. 2016, 15, 92.  doi: 10.1038/nmat4446

    31. [31]

      Kim, J. B.; Han, S. H.; Yang, K.; Kwon, S. K.; Kim, J. J.; Kim, Y. H. Chem. Commun. 2015, 51, 58.  doi: 10.1039/C4CC07768G

    32. [32]

      Kesarkar, S.; Mróz, W.; Penconi, M.; Pasini, M.; Destri, S.; Cazzaniga, M.; Bossi, A. Angew. Chem., Int. Ed. 2016, 55, 2714.  doi: 10.1002/anie.201509798

    33. [33]

      Chen, S. Q.; Dai, J.; Zhou, K. F.; Luo, Y. J.; Su, S. J.; Pu, X. M.; Huang, Y.; Lu, Z. Y. Acta Chim. Sinica 2017, 75, 367.
       

    34. [34]

      Dumur, F.; Nasr, G.; Wantz, G.; Mayer, C. R.; Dumas, E.; Guerlin, A.; Miomandre, F.; Clavier, G.; Bertin, D.; Gigmes, D. Org. Electron. 2011, 12, 1683.  doi: 10.1016/j.orgel.2011.06.014

    35. [35]

      Nasr, G.; Guerlin, A.; Dumur, F.; Beouch, L.; Dumas, E.; Clavier, G.; Miomandre, F.; Goubard, F.; Gigmes, D.; Bertin, D.; Wantze, G.; Mayer, C. R. Chem. Commun. 2011, 47, 10698.  doi: 10.1039/c1cc13733f

    36. [36]

      Stephens, D. J.; Allan, V. J. Science 2003, 300, 82.  doi: 10.1126/science.1082160

    37. [37]

      Dmitriev, R. I.; Papkovsky, D. B. Cell. Mol. Life Sci. 2012, 69, 2025.  doi: 10.1007/s00018-011-0914-0

    38. [38]

      Wang, X. D.; Wolfbeis, O. S. Chem. Soc. Rev. 2014, 43, 3666.  doi: 10.1039/C4CS00039K

    39. [39]

      Knox, H. J.; Hedhli, J.; Kim, T. W.; Khalili, K.; Dobrucki, L. W.; Chan, J. Nat. Commun. 2017, 8, 1794.  doi: 10.1038/s41467-017-01951-0

    40. [40]

      Papkovsky, D. B.; Dmitriev, R. I. Chem. Soc. Rev. 2013, 42, 8700.  doi: 10.1039/c3cs60131e

    41. [41]

      Dmitriev, R. I.; Borisov, S. M.; Dussmann, H.; Sun, S. W.; Muller, B. J.; Prehn, J.; Baklaushev, V. P.; Klimant, I.; Papkovsky, D. B. ACS Nano 2015, 9, 5275.  doi: 10.1021/acsnano.5b00771

    42. [42]

      Aigner, D.; Dmitriev, R. I.; Borisov, S. M.; Papkovsky, D. B.; Klimant, I. J. Mater. Chem. B 2014, 2, 6792.  doi: 10.1039/C4TB01006J

    43. [43]

      Baggaley, E.; Botchway, S. W.; Haycock, J. W.; Morris, H.; Sazanovich, I. V.; Williams, J. G.; Weinstein, J. A. Chem. Sci. 2014, 5, 879.  doi: 10.1039/C3SC51875B

    44. [44]

      Wang, J. Q.; Hou, X. J.; Jin, C. Z.; Chao, H. Chinese J. Chem. 2016, 34, 583.  doi: 10.1002/cjoc.201500769

    45. [45]

      Lee, M. H.; Han, J. H.; Lee, J. H.; Park, N.; Kumar, R.; Kang, C.; Kim, J. S. Angew. Chem., Int. Ed. 2013, 52, 6206.  doi: 10.1002/anie.201301894

    46. [46]

      Sapsford, K. E.; Berti, L.; Medintz, I. L. Angew. Chem., Int. Ed. 2006, 45, 4562.  doi: 10.1002/anie.200503873

    47. [47]

      Jares-Erijman, E. A.; Jovin, T. M. Nat. Biotechnol. 2003, 21, 1387.  doi: 10.1038/nbt896

    48. [48]

      Xiong, L.; Zhao, Q.; Chen, H.; Wu, Y.; Dong, Z.; Zhou, Z.; Li, F. Inorg. Chem. 2010, 49, 6402.  doi: 10.1021/ic902266x

    49. [49]

      Ma, Y.; Liang, H.; Zeng, Y.; Yang, H.; Ho, C. L.; Xu, W. J.; Zhao, Q.; Huang, W.; Wong, W. Y. Chem. Sci. 2016, 7, 3338.  doi: 10.1039/C5SC04624F

    50. [50]

      Gottlieb, R. A.; Nordberg, J.; Skowronski, E.; Babior, B. M. Proc. Natl. Acad. Sci. 1996, 93, 654.  doi: 10.1073/pnas.93.2.654

    51. [51]

      Hoyt, K. R.; Reynolds, I. J. J. Neurochem. 1998, 71, 1051.

    52. [52]

      Casey, J. R.; Grinstein, S.; Orlowski, J. Nat. Rev. Mol. Cell Biol. 2010, 11, 50.  doi: 10.1038/nrm2820

    53. [53]

      Shahrokhian, S. Anal. Chem. 2001, 73, 5972.  doi: 10.1021/ac010541m

    54. [54]

      Seshadri, S.; Beiser, A.; Selhub, J.; Jacques, P. F.; Rosenberg, I. H.; D'Agostino, R. B.; Wilson, P. W. F.; Wolf, P. A. N. Engl. J. Med. 2002, 346, 476.  doi: 10.1056/NEJMoa011613

    55. [55]

      Ma, Y.; Liu, S. J.; Yang, H. R.; Wu, Y. Q.; Yang, C. J.; Liu, X. M.; Zhao, Q.; Wu, H. Z.; Liang, J. C.; Li, F. Y.; Huang, W. J. Mater. Chem. 2011, 21, 18974.  doi: 10.1039/c1jm13513a

    56. [56]

      Liu, S.; Xu, A.; Chen, Z.; Ma, Y.; Yang, H.; Shi, Z.; Zhao, Q. Opt. Express. 2016, 24, 28247.  doi: 10.1364/OE.24.028247

    57. [57]

      Acker, T.; Acker, H. J. Exp. Biol. 2004, 207, 3171.  doi: 10.1242/jeb.01075

    58. [58]

      Tobita, S.; Yoshihara, T. Curr. Opin. Chem. Biol. 2016, 33, 39.  doi: 10.1016/j.cbpa.2016.05.017

    59. [59]

      Denko, N. C. Nat. Rev. Cancer. 2008, 8, 705.  doi: 10.1038/nrc2468

    60. [60]

      Simon, M. C.; Liu, L.; Barnhart, B. C.; Young, R. M. Annu. Rev. Physiol. 2008, 70, 51.  doi: 10.1146/annurev.physiol.70.113006.100526

    61. [61]

      Ma, Y.; Dong, Y. F.; Zou, L.; Shen, L.; Liu, S. Y.; Liu, S. J.; Huang, W.; Zhao, Q.; Wong, W. Y. Eur. J. Inorg. Chem. 2018, 20, 345.

    62. [62]

      Ogilby, P. R. Chem. Soc. Rev. 2010, 39, 3181.  doi: 10.1039/b926014p

    63. [63]

      Apel, K.; Hirt, H. Annu. Rev. Plant Biol. 2004, 55, 373.  doi: 10.1146/annurev.arplant.55.031903.141701

    64. [64]

      Greer, A. Acc. Chem. Res. 2006, 39, 797.  doi: 10.1021/ar050191g

    65. [65]

      Zhou, Q. X.; Wang, X. S. Acta Chim. Sinica 2017, 75, 49.  doi: 10.11862/CJIC.2017.013

    66. [66]

      Nam, J. S.; Kang, M. G.; Kang, J.; Park, S. Y.; Lee, S. J. C.; Kim, H. T.; Seo, J. K.; Kwon, O. H.; Lim, M. H.; Rhee, H. W.; Kwon, T. H.; J. Am. Chem. Soc. 2016, 138, 10968.  doi: 10.1021/jacs.6b05302

    67. [67]

      Du, E.; Hu, X.; Roy, S.; Wang, P.; Deasy, K.; Mochizuki, T.; Zhang, Y. Chem. Commun. 2017, 53, 6033.  doi: 10.1039/C7CC03337K

    68. [68]

      Lv, W.; Zhang, Z.; Zhang, K. Y.; Yang, H.; Liu, S.; Xu, A.; Guo, S.; Zhao, Q.; Huang, W. Angew. Chem., Int. Ed. 2016, 55, 9947.  doi: 10.1002/anie.201604130

    69. [69]

      Ma, Y.; Zhang, S. J.; Wei, H. J.; Dong, Y. F.; Shen, L.; Liu, S. J.; Zhao, Q.; Liu, L.; Wong, W. Y. Dalton Trans. 2018, 47, 5582.  doi: 10.1039/C8DT00720A

    70. [70]

      Sun, H. B.; Liu, S. J.; Lin, W. P.; Zhang, K. Y.; Lv, W.; Huang X.; Huo, F. W.; Yang, H. R.; Jenkins, G.; Zhao, Q.; Huang, W. Nat. Commun. 2014, 5, 3601.  doi: 10.1038/ncomms4601

    71. [71]

      Ma, Y.; Yang, J.; Liu, S. J.; Xia, H. T.; She, P. F.; Jiang, R.; Zhao, Q. Adv. Optical Mater. 2017, 1700587.

    72. [72]

      Ma, Y.; Liu, S. J.; Yang, H. R.; Zeng, Y.; She, P. F.; Zhu, N. Y.; Ho, C. L.; Zhao, Q.; Huang, W.; Wong, W. Y. Inorg. Chem. 2017, 56, 2409.  doi: 10.1021/acs.inorgchem.6b02319

    73. [73]

      Guo, S.; Huang, T. C.; Liu, S. J.; Zhang, K. Y.; Yang, H. R.; Han, J. M.; Zhao, Q.; Huang, W. Chem. Sci. 2017, 8, 348.  doi: 10.1039/C6SC02837C

    74. [74]

      Liu, Q.; Xie, M.; Chang, X. Y.; Cao, S.; Zou, C.; Fu, W. F.; Che, C. M.; Chen, Y.; Lu, W. Angew. Chem., Int. Ed. 2018, 57, 6279.  doi: 10.1002/anie.201803965

    75. [75]

      Lehn, J. M. Science 2002, 295, 2400.  doi: 10.1126/science.1071063

    76. [76]

      Aida, T.; Meijer, E. W.; Stupp, S. I. Science 2012, 335, 813.  doi: 10.1126/science.1205962

    77. [77]

      Aliprandi, A.; Mauro, M.; De Cola, L. Nat. Chem. 2016, 8, 10.  doi: 10.1038/nchem.2383

    78. [78]

      Ma, Y.; Zhao, W. W.; She, P. F.; Liu, S. Y.; Shen, L.; Li, X. L.; Liu, S. J.; Zhao, Q.; Huang, W.; Wong, W. Y. Small Methods 2019, 1900142.

    79. [79]

      Po, C.; Tam, A. Y. Y.; Wong, K. M. C.; Yam, V. W. W. J. Am. Chem. Soc. 2011, 133, 12136.  doi: 10.1021/ja203920w

    80. [80]

      Po, C.; Yam, V. W. W. Chem. Sci. 2014, 5, 4868.  doi: 10.1039/C4SC01588F

    81. [81]

      Aliprandi, A.; Genovese, D.; Mauro, M.; De Cola, L. Chem. Lett. 2015, 44, 1152.  doi: 10.1246/cl.150592

    82. [82]

      Chow, P.; Cheng, G.; Tong, G. S. M.; To, W.; Kwong, W.; Low, K.; Kwok, C.; Ma, C. S.; Che, C. M. Angew. Chem., Int. Ed. 2015, 54, 2084.  doi: 10.1002/anie.201408940

    83. [83]

      Camerel, F.; Ziessel, R.; Donnio, B.; Bourgogne, C.; Guillon, D.; Schmutz, M.; Iacovita, C.; Bucher, J. Angew. Chem., Int. Ed. 2007, 46, 2659.  doi: 10.1002/anie.200604012

    84. [84]

      Chan, M. H. Y.; Ng, M.; Leung, S. Y. L.; Lam, W. H.; Yam, V. W. W. J. Am. Chem. Soc. 2017, 139, 8639.  doi: 10.1021/jacs.7b03635

    85. [85]

      Li, Y. H.; Zeng, W. J.; Lai, W. Y.; Shimada, S.; Wang, S.; Wang, L. H.; Huang, W. Chinese J. Chem. 2015, 33, 1206.  doi: 10.1002/cjoc.201500418

    86. [86]

      Wong, V. C. H.; Po, C.; Leung, S. Y. L.; Chan, A. K. W.; Yang, S. Y.; Zhu, B. R.; Cui, X. D.; Yam, V. W. W. J. Am. Chem. Soc. 2018, 140, 657.  doi: 10.1021/jacs.7b09770

  • 加载中
    1. [1]

      Qiaowen CHANGKe ZHANGGuangying HUANGNuonan LIWeiping LIUFuquan BAICaixian YANYangyang FENGChuan ZUO . Syntheses, structures, and photo-physical properties of iridium phosphorescent complexes with phenylpyridine derivatives bearing different substituting groups. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 235-244. doi: 10.11862/CJIC.20240311

    2. [2]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

    3. [3]

      Cunling Ye Xitong Zhao Hongfang Wang Zhike Wang . A Formula for the Calculation of Complex Concentrations Arising from Side Reactions and Its Applications. University Chemistry, 2024, 39(4): 382-386. doi: 10.3866/PKU.DXHX202310043

    4. [4]

      Wenjing ZHANGXiaoqing WANGZhipeng LIU . Recent developments of inorganic metal complex-based photothermal materials and their applications in photothermal therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2356-2372. doi: 10.11862/CJIC.20240254

    5. [5]

      Hong Wu Yuxi Wang Hongyan Feng Xiaokui Wang Bangkun Jin Xuan Lei Qianghua Wu Hongchun Li . Application of Computational Chemistry in the Determination of Magnetic Susceptibility of Metal Complexes. University Chemistry, 2025, 40(3): 116-123. doi: 10.12461/PKU.DXHX202405141

    6. [6]

      Wei Li Ze Chang Meihui Yu Ying Zhang . Curriculum Ideological and Political Design of Piezoelectricity Measurement Experiments of Coordination Compounds. University Chemistry, 2024, 39(2): 77-82. doi: 10.3866/PKU.DXHX202308004

    7. [7]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    8. [8]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    9. [9]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    10. [10]

      Pengcheng Yan Peng Wang Jing Huang Zhao Mo Li Xu Yun Chen Yu Zhang Zhichong Qi Hui Xu Henan Li . Engineering Multiple Optimization Strategy on Bismuth Oxyhalide Photoactive Materials for Efficient Photoelectrochemical Applications. Acta Physico-Chimica Sinica, 2025, 41(2): 100014-. doi: 10.3866/PKU.WHXB202309047

    11. [11]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    12. [12]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    13. [13]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    14. [14]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    15. [15]

      Qingyang Cui Feng Yu Zirun Wang Bangkun Jin Wanqun Hu Wan Li . From Jelly to Soft Matter: Preparation and Properties-Exploring of Different Kinds of Hydrogels. University Chemistry, 2024, 39(9): 338-348. doi: 10.3866/PKU.DXHX202309046

    16. [16]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

    17. [17]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    18. [18]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    19. [19]

      Wenjie SHIFan LUMengwei CHENJin WANGYingfeng HAN . Synthesis and host-guest properties of imidazolium-functionalized zirconium metal-organic cage. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 105-113. doi: 10.11862/CJIC.20240360

    20. [20]

      Jingwen Wang Minghao Wu Xing Zuo Yaofeng Yuan Yahao Wang Xiaoshun Zhou Jianfeng Yan . Advances in the Application of Electrochemical Regulation in Investigating the Electron Transport Properties of Single-Molecule Junctions. University Chemistry, 2025, 40(3): 291-301. doi: 10.12461/PKU.DXHX202406023

Metrics
  • PDF Downloads(29)
  • Abstract views(1800)
  • HTML views(283)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return