Citation: Ren Bao-Yi, Yi Jian-Cheng, Zhong Dao-Kun, Zhao Yu-Zhi, Guo Run-Da, Sheng Yong-Gang, Sun Ya-Guang, Xie Ling-Hai, Huang Wei. Conjugated Regulation of Phosphorescent Iridium (Ⅲ) Complex Constructed from Spiro Ligand and Its Electroluminescent Performances[J]. Acta Chimica Sinica, ;2020, 78(1): 56-62. doi: 10.6023/A19110406 shu

Conjugated Regulation of Phosphorescent Iridium (Ⅲ) Complex Constructed from Spiro Ligand and Its Electroluminescent Performances

  • Corresponding author: Guo Run-Da, runda_guo@hust.edu.cn Sun Ya-Guang, sunyaguang@syuct.edu.cn
  • Received Date: 15 November 2019
    Available Online: 19 January 2019

    Fund Project: the Supporting Project for Innovative Talents of Higher Education Institutions in Liaoning Province LR2018018Project supported by the Supporting Project for Innovative Talents of Higher Education Institutions in Liaoning Province (LR2018018), the Natural Science Foundation of Liaoning Province (No. 20180550539), the Science and Technology project of Shenyang (No. 18-013-0-26), and the Open Research Fund of Key Laboratory for Organic Electronics and Information Displaysthe Natural Science Foundation of Liaoning Province 20180550539the Science and Technology project of Shenyang 18-013-0-26

Figures(7)

  • It is an important pathway in the field of phosphorescent organic light-emitting diodes (PhOLED) that endowing iridium (Ⅲ) emitters with the features of low-cost, decent photoelectric properties, and high doping-concentration application by harmonizing electronic and steric effects of corresponding ligands. Based on our previous research that introducing spiro ligand into Ir complexes to protect emitting-center and to suppress concentration quenching, herein, for pushing the emission to orange region, we extend the conjugated structure of spiro[fluorene-9, 9'-xanthene] (SFX) by connected benzo[d]-thiazole-2-yl on the fluorene moiety of SFX via Suzuki-Miyaura coupling, acting as a new spiro ligand. A homoleptic Ir complex, fac-Ir(SFXbtz)3, was synthesized successfully, and the structure and the photophysical and electrochemical properties were studied by nuclear magnetic resonance, single crystal X-ray diffraction, absorption and emission measurements, as well as cyclic voltammetry. The crystallographic data revealed an enlarged Ir…Ir distance and weakly intermolecular π-π interactions between the spiro ligands. The emission spectrum of fac-Ir(SFXbtz)3 showed a maximum peak at 587 nm and a shoulder peak at 635 nm with a photoluminescence (PL) quantum yield (QY) of 64.7% (relative to tris[2-phenylpyridinato-C2, N]iridium(Ⅲ), PLQY=40%). The highest occupied molecular orbital level was determined to be -5.28 eV according to the onset oxidation potential (0.48 V). In view of the orange light-emitting and the high PLQY of fac-Ir(SFXbtz)3, the monochromatic and two-element white PhOLED were fabricated to investigate its electroluminescence (EL) performance in high doping concentrations, ω=12% for monochromatic device and ω=15% for two-element white device, respectively. The EL spectrum of the monochromatic PhOLED (device D1) using common 4, 4'-bis(N-carbazolyl)-1, 1'-biphenyl as host exhibits two emission peaks, a maximum emission peak at 581 nm and shoulder emission peak at 631 nm, corresponding to its PL spectrum. The device D1 shows a peak performance of 10.8 cd·A-1 and 8.4 lm·W-1, maximum brightness of 7217 cd·m-2, respectively. The two-element white PhOLED selecting bis[2-(4, 6-difluorophenyl)pyridinato-C2, N](picolinato)iridium(Ⅲ) as complementary blue-light component, possesses a peak performance of 11.6 cd·A-1 and 8.0 lm·W-1, maximum brightness of 8763 cd·m-2, and stabilized CIE 1931 (0.34~0.37, 0.36~0.38) under operated voltages of 3~9 V, respectively. These results indicate that the fac-Ir(SFXbtz)3 is a potential phosphor for efficient orange PhOLED, possessing the advantages of low-cost, suitable doping in high concentration, and stabilized color coordinates.
  • 加载中
    1. [1]

      Chi, Y.; Chou, P.-T. Chem. Soc. Rev. 2010, 39, 638.  doi: 10.1039/B916237B

    2. [2]

      Xu, H.; Chen, R.; Sun, Q.; Lai, W.; Su, Q.; Huang, W.; Liu, X. Chem. Soc. Rev. 2014, 43, 3259.  doi: 10.1039/C3CS60449G

    3. [3]

      Liao, Z.; Zhou, T.; Mi, B.; Gao, Z; Fan, Q.; Huang, W. Prog. Chem. 2011, 23, 1627.
       

    4. [4]

      Mroz, R.; Vezzu, D. A.; Wallace, B.; Ravindranathan, D.; Carroll, J.; Pike, R. D.; Huo, S. Chinese J. Org. Chem. 2018, 38, 171.  doi: 10.6023/cjoc201709010

    5. [5]

      Baldo, M. A.; Thompson, M. E.; Forrest, S. R. Nature 2000, 403, 750.  doi: 10.1038/35001541

    6. [6]

      Mi, B. X.; Wang, P. F.; Gao, Z. Q.; Lee, C. S.; Lee, S. T.; Hong, H. L.; Chen, X. M.; Wong, M. S.; Xia, P. F.; Cheah, K. W.; Chen, C. H.; Huang, W. Adv. Mater. 2009, 21, 339.  doi: 10.1002/adma.200801604

    7. [7]

      Lamansky, S.; Djurovich, P.; Murphy, D.; Abdel-Razzaq, F.; Lee, H.-E.; Adachi, C.; Burrows, P. E.; Forrest, S. R.; Thompson, M. E. J. Am. Chem. Soc. 2001, 123, 4304.  doi: 10.1021/ja003693s

    8. [8]

      Tsuboyama, A.; Iwawaki, H.; Furugori, M.; Mukaide, T.; Kamatani, J.; Igawa, S.; Moriyama, T.; Miura, S.; Takiguchi, T.; Okada, S.; Hoshino, M.; Ueno, K. J. Am. Chem. Soc. 2003, 125, 12971.  doi: 10.1021/ja034732d

    9. [9]

      Kwon, Y.; Han, S. H.; Yu, S.; Lee, J. Y.; Lee, K. M. J. Mater. Chem. C 2018, 6, 4565.  doi: 10.1039/C8TC00568K

    10. [10]

      Su, S. J.; Chiba, T.; Takeda, T.; Kido, J. Adv. Mater. 2008, 20, 2125.  doi: 10.1002/adma.200701730

    11. [11]

      Li, J.; Wang, R.; Yang, R.; Zhou, W.; Wang, X. J. Mater. Chem. C 2013, 1, 4171.  doi: 10.1039/c3tc30586d

    12. [12]

      Liu, D.; Ren, H.; Deng, L.; Zhang, T. ACS Appl. Mater. Inter. 2013, 5, 4937.  doi: 10.1021/am400672y

    13. [13]

      Su, Y.-J.; Huang, H.-L.; Li, C.-L.; Chien, C.-H.; Tao, Y.-T.; Chou, P.-T.; Datta, S.; Liu, R.-S. Adv. Mater. 2003, 15, 884.  doi: 10.1002/adma.200304630

    14. [14]

      Fan, C.; Yang, C. Chem. Soc. Rev. 2014, 43, 6439.  doi: 10.1039/C4CS00110A

    15. [15]

      Cui, L.-S.; Liu, Y.; Liu, X.-Y.; Jiang, Z. Q.; Liao, L. S. ACS Appl. Mater. Inter. 2015, 7, 11007.  doi: 10.1021/acsami.5b02541

    16. [16]

      Xie, H. Z.; Liu, M. W.; Wang, O. Y.; Zhang, X. H.; Lee, C. S.; Hung, L. S.; Lee, S. T.; Teng, P. F.; Kwong, H. L.; Zheng, H.; Che, C. M. Adv. Mater. 2001, 13, 1245.  doi: 10.1002/1521-4095(200108)13:16<1245::AID-ADMA1245>3.0.CO;2-J

    17. [17]

      Tong, B.; Wang, H.; Chen, M.; Zhou, S.; Hu, Y.; Zhang, Q.; He, G.; Fu, L.; Shi, H.; Jin, L.; Zhou, H. Dalton Trans. 2018, 47, 12243.  doi: 10.1039/C8DT02781A

    18. [18]

      Xia, D.; Wang, B.; Chen, B.; Wang, S.; Zhang, B.; Ding, J.; Wang, L.; Jing, X.; Wang, F. Angew. Chem., Int. Ed. 2014, 53, 1048.  doi: 10.1002/anie.201307311

    19. [19]

      Xie, L.-H.; Zhu, R.; Qian, Y.; Liu, R.-R.; Chen, S.-F.; Lin, J.; Huang, W. J. Phys. Chem. Lett. 2009, 1, 272.

    20. [20]

      Xie, L.-H.; Liu, F.; Tang, C.; Hou, X.-Y.; Hua, Y.-R.; Fan, Q.-L.; Huang, W. Org. Lett. 2006, 8, 2787.  doi: 10.1021/ol060871z

    21. [21]

      Gu, J.-F.; Xie, G.-H.; Zhang, L.; Chen, S.-F.; Lin, Z.-Q.; Zhang, Z.-S.; Zhao, J.-F.; Xie, L.-H.; Tang, C.; Zhao, Y.; Liu, S.-Y.; Huang, W. J. Phys. Chem. Lett. 2010, 1, 2849.  doi: 10.1021/jz101039d

    22. [22]

      Zhao, X.-H.; Xie, G.-H.; Liu, Z.-D.; Li, W.-J.; Yi, M.-D.; Xie, L.-H.; Hu, C.-P.; Zhu, R.; Zhao, Q.; Zhao, Y.; Zhao, J.-F.; Qian, Y.; Huang, W. Chem. Commun. 2012, 48, 3854.  doi: 10.1039/c2cc30595j

    23. [23]

      Li, J.; Ding, D.; Tao, Y.; Wei, Y.; Chen, R.; Xie, L.; Huang, W.; Xu, H. Adv. Mater. 2016, 28, 3122.  doi: 10.1002/adma.201506286

    24. [24]

      Ren, B.-Y.; Zhong, D.-K.; Sun, Y.-G.; Zhao, X.-H.; Zhang, Q.-J.; Liu, Y.; Jurow, M.; Sun, M.-L.; Zhang, Z.-S.; Zhao, Y. Org. Electronics 2016, 36, 140.  doi: 10.1016/j.orgel.2016.06.006

    25. [25]

      Xu, B.; Zhang, J.; Hua, Y.; Liu, P.; Wang, L.; RUan, C.; Li, Y.; Boschloo, G.; Johansson, E. M. J.; Kloo, L.; Hagfeldt, A.; Jen, A. K.-Y.; Sun, L. Chem 2017, 2, 676.  doi: 10.1016/j.chempr.2017.03.011

    26. [26]

      Cheng, M.; Li, Y.; Liu, P.; Zhang, F.; Hajian, A.; Wang, H.; Li, J.; Wang, L.; Kloo, L.; Yang, X.; Sun, L. Solar RRL 2017, 1, 1700046.  doi: 10.1002/solr.201700046

    27. [27]

      Ren, B.-Y.; Guo, R.-D.; Zhong, D.-K.; Ou, C.-J.; Xiong, G.; Zhao, X.-H.; Sun, Y.-G.; Jurow, M.; Kang, J.; Zhao, Y.; Li, S.-B.; You, L.-X.; Wang, L.-W.; Liu, Y.; Huang, W. Inorg. Chem. 2017, 56, 8397.  doi: 10.1021/acs.inorgchem.7b01034

    28. [28]

      Xue, J.; Xin, L.; Hou, J.; Duan, L.; Wang, R.; Wei, Y.; Qiao, J. Chem. Mater. 2017, 29, 4775.  doi: 10.1021/acs.chemmater.7b00518

    29. [29]

      Breu, J.; Stössel, P.; Schrader, S.; Starukhin, A.; Finkenzeller, W. J.; Yersin, H. Chem. Mater. 2005, 17, 1745.  doi: 10.1021/cm0486767

    30. [30]

      Chen, S.; Dai, J.; Zhou, K.; Luo, Y.; Su, S.; Pu, X.; Huang, Y.; Lu, Z. Acta Chim. Sinica 2017, 75, 367.
       

    31. [31]

      Caspar, J. V.; Meyer, T. J. J. Phys. Chem. 1983, 87, 952.  doi: 10.1021/j100229a010

    32. [32]

      Jayabharathi, J.; Thanikachalam, V.; Saravanan, K. J. Photoch. Photobio. A 2009, 208, 13.  doi: 10.1016/j.jphotochem.2009.07.027

    33. [33]

      Jiang, B.; Ning, X.; Gong, S.; Jiang, N.; Zhong, C.; Lu, Z. H.; Yang, C. J. Mater. Chem. C 2017, 5, 10220.  doi: 10.1039/C7TC03667A

    34. [34]

      Liang, A.; Huang, G.; Dong, S.; Zheng, X.; Zhu, J.; Wang, Z.; Wu, W.; Zhang, J.; Huang, F. J. Mater. Chem. C 2016, 4, 6626.  doi: 10.1039/C6TC01922F

    35. [35]

      Liang, A.; Luo, M.; Liu, Y.; Wang, H.; Wang, Z.; Zheng, X.; Cao, T.; Liu, D.; Zhang, Y.; Huang, F. Dyes Pigments 2018, 159, 637.  doi: 10.1016/j.dyepig.2018.07.019

    36. [36]

      Yang, X.; Feng, Z.; Dang, J.; Sun, Y.; Zhou, G.; Wong, W. Y. Mater. Chem. Front. 2019, 3, 376.  doi: 10.1039/C8QM00548F

  • 加载中
    1. [1]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    2. [2]

      Zehua Zhang Haitao Yu Yanyu Qi . 多重共振TADF分子的设计策略. Acta Physico-Chimica Sinica, 2025, 41(1): 2309042-. doi: 10.3866/PKU.WHXB202309042

    3. [3]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    4. [4]

      Qiaowen CHANGKe ZHANGGuangying HUANGNuonan LIWeiping LIUFuquan BAICaixian YANYangyang FENGChuan ZUO . Syntheses, structures, and photo-physical properties of iridium phosphorescent complexes with phenylpyridine derivatives bearing different substituting groups. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 235-244. doi: 10.11862/CJIC.20240311

    5. [5]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    6. [6]

      Hong RAOYang HUYicong MAChunxin LÜWei ZHONGLihua DU . Synthesis and in vitro anticancer activity of phenanthroline-functionalized nitrogen heterocyclic carbene homo- and heterobimetallic silver/gold complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2429-2437. doi: 10.11862/CJIC.20240275

    7. [7]

      Yongpo Zhang Xinfeng Li Yafei Song Mengyao Sun Congcong Yin Chunyan Gao Jinzhong Zhao . Synthesis of Chlorine-Bridged Binuclear Cu(I) Complexes Based on Conjugation-Driven Cu(II) Oxidized Secondary Amines. University Chemistry, 2024, 39(5): 44-51. doi: 10.3866/PKU.DXHX202309092

    8. [8]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    9. [9]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    10. [10]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    11. [11]

      Ji Qi Jianan Zhu Yanxu Zhang Jiahao Yang Chunting Zhang . Visible Color Change of Copper (II) Complexes in Reversible SCSC Transformation: The Effect of Structure on Color. University Chemistry, 2024, 39(3): 43-57. doi: 10.3866/PKU.DXHX202307050

    12. [12]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    13. [13]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    14. [14]

      Cheng Zheng Shiying Zheng Yanping Zhang Shoutian Zheng Qiaohua Wei . Synthesis, Copper Content Analysis, and Luminescent Performance Study of Binuclear Copper (I) Complexes with Isomeric Luminescence Shift: A Comprehensive Chemical Experiment Recommendation. University Chemistry, 2024, 39(7): 322-329. doi: 10.3866/PKU.DXHX202310131

    15. [15]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    16. [16]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    17. [17]

      Keweiyang Zhang Zihan Fan Liyuan Xiao Haitao Long Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, 2024, 39(5): 163-171. doi: 10.3866/PKU.DXHX202310084

    18. [18]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    19. [19]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    20. [20]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

Metrics
  • PDF Downloads(9)
  • Abstract views(1134)
  • HTML views(247)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return