Citation: Chen Yingying, Liu Huan, Cheng Yan, Xie Qingji. Preparation of Honeycomb-structured AuPtCu Electrocatalyst by Dynamic Hydrogen Bubble and Sacrificial Cu Templates for Oxidation of Formic Acid[J]. Acta Chimica Sinica, ;2020, 78(4): 330-336. doi: 10.6023/A19110400 shu

Preparation of Honeycomb-structured AuPtCu Electrocatalyst by Dynamic Hydrogen Bubble and Sacrificial Cu Templates for Oxidation of Formic Acid

  • Corresponding author: Xie Qingji, xieqj@hunnu.edu.cn
  • Received Date: 12 November 2019
    Available Online: 11 March 2020

    Fund Project: the National Natural Science Foundation of China 21475041Project supported by the National Natural Science Foundation of China (Nos. 21675050, 21475041 and 21775137), Hunan Lotus Scholars Program (2011) and Foundation of the Science & Technology Department of Hunan Province (No. 2016SK2020)the National Natural Science Foundation of China 21675050the National Natural Science Foundation of China 21775137Foundation of the Science & Technology Department of Hunan Province 2016SK2020Hunan Lotus Scholars Program 2011

Figures(5)

  • Improving the performance of electrocatalytic formic acid oxidation is the key issue to develop high-performance direct formic acid fuel cells (DFAFC). Pt-based and Pd-based materials are the important electrocatalysts for formic acid oxidation. Micro/nano-porous metal materials are widely concerned in the electrochemistry field due to the high specific electrode-surface area. The dynamic hydrogen bubble template (DHBT) method has been widely used for preparing the three-dimensional honeycomb-like porous nano-metals (3DHPNMs). However, as far as we know, the use of a sacrificial metal template to prepare the 3DHPNMs with improved performance for the electrocatalytic oxidation of small organic molecules has not been reported. Herein, a three-dimensional honeycomb-like porous nano-AuPtCu (3DHPN-AuPtCu) composite was electrodeposited on a gold-plated glassy carbon electrode (Aupla/GCE) by the DHBT method, followed by anodic stripping of Cu to yield a 3DHPN-AuPtCu/Aupla/GCE. The relevant modified electrodes were characterized by cyclic voltammetry (CV), metallographic microscopy, scanning electron microscopy (SEM), energy dispersive spectroscopy and inductively coupled plasma-atomic emission spectrometry. The SEM results clearly revealed that the use of the sacrificial Cu template can modulate the metal-honeycomb structure, and the 3DHPN-AuPtCu/Aupla/GCE can thus possess the better micro/nano-porous structure and the improved electrocatalytic performance than a Cu-template-free 3DHPN-AuPt/Aupla/GCE. In our opinion, the simultaneous electrodeposition of Cu can intervene in the electrodeposition of Au and Pt, and thus a new structure with more active sites exposed and the electrocatalysis performance improved can be obtained after the anodic stripping of electrodeposited Cu. As a result, the 3DHPN-AuPtCu/Aupla/GCE exhibited high anti-poisoning nature and high stability, because many discontinuous Pt atoms on this electrode can suppress the formation of adsorption-state COads during the electrocatalytic oxidation of formic acid. The electrocatalytic oxidation peak current density on 3DHPN-AuPtCu/Aupla/GCE in 0.5 mol/L aqueous H2SO4 containing 0.2 mol/L HCOOH was 12.5 mA·cmPt-2 (CV, -0.3~1.0 V, 50 mV/s), which is superior to the control electrodes and many reported Pt-based electrocatalysis electrodes. The suggested double- template method for preparing honeycomb-structured micro/nano-porous metal materials with improved performance has the potential for wider electrocatalysis and electroanalysis applications.
  • 加载中
    1. [1]

      Kim, J.; Roh, C.-W.; Sahoo, S. K.; Yang, S.; Bae, J.; Han, J. W.; Lee, H. Adv. Energy Mater. 2018, 8, 1701476.  doi: 10.1002/aenm.201701476

    2. [2]

      Marcinkowski, M. D.; Murphy, C. J.; Liriano, M. L.; Wasio, N. A.; Lucci, F. R.; Sykes, E. C. H. ACS Catal. 2015, 5, 7371.  doi: 10.1021/acscatal.5b01994

    3. [3]

      Fan, H. s.; Cheng, M.; Wang, L.; Song, Y. j.; Cui, Y.; Wang, R. m. Nano Energy 2018, 48, 1.  doi: 10.1016/j.nanoen.2018.03.018

    4. [4]

      Wang, X.-M.; Wang, M.-E.; Zhou, D.-D.; Xia, Y.-Y. Phys. Chem. Chem. Phys. 2011, 13, 13594.  doi: 10.1039/c1cp21680e

    5. [5]

      Li, M.; Liu, R.; Han, G.; Tian, Y.; Chang, Y.; Xiao, Y. Chin. J. Chem. 2017, 35, 1405.  doi: 10.1002/cjoc.201700061

    6. [6]

      Li, N. Chin. J. Chem. 2016, 34, 1129.  doi: 10.1002/cjoc.201600427

    7. [7]

      Cao, J.; Zhu, Z.; Zhao, W.; Xu, J.; Chen, Z. Chin. J. Chem. 2016, 34, 1086.  doi: 10.1002/cjoc.201600366

    8. [8]

      Liu, J.; Wu, B.; Gao, Y. Acta Chim. Sinica 2012, 70, 1743.

    9. [9]

      Shi, Y.; Li, J.; Xing, J.; Xiao, M.; Chen, Y.; Zhou, Y.; Lu, T.; Tang, Y. Acta Chim. Sinica 2012, 70, 1257.  doi: 10.3866/PKU.WHXB201202212

    10. [10]

      Huang, X.; Zhao, Z.; Fan, J.; Tan, Y.; Zheng, N. J. Am. Chem. Soc. 2011, 133, 4718.  doi: 10.1021/ja1117528

    11. [11]

      Xia, B. Y.; Wu, H. B.; Yan, Y.; Lou, X. W.; Wang, X. J. Am. Chem. Soc. 2013, 135, 9480.  doi: 10.1021/ja402955t

    12. [12]

      Ji, X.; Lee, K. T.; Holden, R.; Zhang, L.; Zhang, J.; Botton, G. A.; Couillard, M.; Nazar, L. F. Nat. Chem. 2010, 2, 286.  doi: 10.1038/nchem.553

    13. [13]

      Wang, R.; Wang, C.; Cai, W.-B.; Ding, Y. Adv. Mater. 2010, 22, 1845.  doi: 10.1002/adma.200903548

    14. [14]

      Zhang, Q.; Yao, Z.; Zhou, R.; Du, Y.; Yang, P. Acta Chim. Sinica 2012, 70, 2149.

    15. [15]

      Zhou, R.; Zhang, H.; Du, Y.; Yang, P. Acta Chim. Sinica 2011, 69, 1533.

    16. [16]

      Plowman, B. J.; Jones, L. A.; Bhargava, S. K. Chem. Commun. 2015, 51, 4331.  doi: 10.1039/C4CC06638C

    17. [17]

      Xu, M.; Sui, Y.; Xiao, G.; Yang, X.; Wei, Y.; Zou, B. Nanoscale 2017, 9, 2514.  doi: 10.1039/C6NR08518K

    18. [18]

      Wang, Z.; Ning, S.; Liu, P.; Ding, Y.; Hirata, A.; Fujita, T.; Chen, M. Adv. Mater. 2017, 29, 1703601.  doi: 10.1002/adma.201703601

    19. [19]

      He, F.; Qiao, Z.; Qin, X.; Chao, L.; Tan, Y.; Xie, Q.; Yao, S. Sens. Actuators B:Chem. 2019, 296, 126679.  doi: 10.1016/j.snb.2019.126679

    20. [20]

      Liu, J.; Cao, L.; Huang, W.; Li, Z. ACS Appl. Mater. Inter. 2011, 3, 3552.  doi: 10.1021/am200782x

    21. [21]

      Plowman, B. J.; O'Mullane, A. P.; Selvakannan, P. R.; Bhargava, S. K. Chem. Commun. 2010, 46, 9182.  doi: 10.1039/c0cc03696j

    22. [22]

      Qiu, H.; Tang, T.; Asif, M.; Huang, X.; Hou, Y. Adv. Funct. Mater. 2019, 29, 1808468.  doi: 10.1002/adfm.201808468

    23. [23]

      Mattarozzi, L.; Cattarin, S.; Comisso, N.; Guerriero, P.; Musiani, M.; Verlato, E. Electrochim. Acta 2016, 198, 296.  doi: 10.1016/j.electacta.2016.03.084

    24. [24]

      Li, R.; Mao, H.; Zhang, J.; Huang, T.; Yu, A. J. Power Sources 2013, 241, 660.  doi: 10.1016/j.jpowsour.2013.05.032

    25. [25]

      Kottakkat, T.; Klingan, K.; Jiang, S.; Jovanov, Z. P.; Davies, V. H.; El-Nagar, G. A. M.; Dau, H.; Roth, C. ACS Appl. Mater. Inter. 2019, 11, 14734.  doi: 10.1021/acsami.8b22071

    26. [26]

      Yuan, W.; Zhang, J.; Shen, P. K.; Li, C. M.; Jiang, S. P. Electrochim. Acta 2016, 190, 817.  doi: 10.1016/j.electacta.2015.12.152

    27. [27]

      Pilapil, B. K.; van Drunen, J.; Makonnen, Y.; Beauchemin, D. Jerkiewicz, G.; Gates, B. D. Adv. Funct. Mater. 2017, 27, 1703171.  doi: 10.1002/adfm.201703171

    28. [28]

      Xi, Z.; Lv, H.; Erdosy, D. P.; Su, D.; Li, Q.; Yu, C.; Li, J.; Sun, S. Nanoscale 2017, 9, 7745.  doi: 10.1039/C7NR02711G

    29. [29]

      Wang, C.; van der Vliet, D.; More, K. L.; Zaluzec, N. J.; Peng, S.; Sun, S.; Daimon, H.; Wang, G.; Greeley, J.; Pearson, J.; Paulikas, A. P.; Karapetrov, G.; Strmcnik, D.; Markovic, N. M.; Stamenkovic, V. R. Nano Lett. 2011, 11, 919.  doi: 10.1021/nl102369k

    30. [30]

      Al Amri, Z.; Mercer, M. P.; Vasiljevic, N. Electrochim. Acta 2016, 210, 520.  doi: 10.1016/j.electacta.2016.05.161

    31. [31]

      You, H.; Zhang, F.; Liu, Z.; Fang, J. ACS Catal. 2014, 4, 2829.  doi: 10.1021/cs500390s

    32. [32]

      Sneed, B. T.; Young, A. P.; Jalalpoor, D.; Golden, M. C.; Mao, S.; Jiang, Y.; Wang, Y.; Tsung, C.-K. ACS Nano 2014, 8, 7239.  doi: 10.1021/nn502259g

    33. [33]

      Wang, X.; Orikasa, Y.; Uchimoto, Y. ACS Catal. 2016, 6, 4195.  doi: 10.1021/acscatal.6b00497

    34. [34]

      Saleem, F.; Xu, B.; Ni, B.; Liu, H.; Nosheen, F.; Li, H.; Wang, X. Adv. Mater. 2015, 27, 2013.  doi: 10.1002/adma.201405319

    35. [35]

      Ramani, S.; Sarkar, S.; Vemuri, V.; Peter, S. C. J. Mater. Chem. A 2017, 5, 11572.  doi: 10.1039/C6TA06339J

    36. [36]

      Xu, H.; Yan, B.; Li, S.; Wang, J.; Wang, C.; Guo, J.; Du, Y. Chem. Eng. J. 2018, 334, 2638.  doi: 10.1016/j.cej.2017.10.175

    37. [37]

      Huang, Y.; Zhao, T.; Zeng, L.; Tan, P.; Xu, J. Electrochim. Acta 2016, 190, 956.  doi: 10.1016/j.electacta.2015.12.223

    38. [38]

      Li, D.; Meng, F.; Wang, H.; Jiang, X.; Zhu, Y. Electrochim. Acta 2016, 190, 852.  doi: 10.1016/j.electacta.2016.01.001

    39. [39]

      Zhang, S.; Shao, Y.; Yin, G.; Lin, Y. Angew. Chem., Int. Ed. 2010, 49, 2211.  doi: 10.1002/anie.200906987

    40. [40]

      Wang, R.; Liu, J.; Liu, P.; Bi, X.; Yan, X.; Wang, W.; Ge, X.; Chen, M.; Ding, Y. Chem. Sci. 2014, 5, 403.  doi: 10.1039/C3SC52792A

    41. [41]

      Kang, Y.; Qi, L.; Li, M.; Diaz, R. E.; Su, D.; Adzic, R. R.; Stach, E.; Li, J.; Murray, C. B. J. Am. Chem. Soc. 2012, 6, 2818.

    42. [42]

      Fu, G.-T.; Xia, B.-Y.; Ma, R.-G.; Chen, Y.; Tang, Y.-W.; Lee, J.-M. Nano Energy 2015, 12, 824.  doi: 10.1016/j.nanoen.2015.01.041

    43. [43]

      Choi, M.; Ahn, C.-Y.; Lee, H.; Kim, J. K.; Oh, S.-H.; Hwang, W.; Yang, S.; Kim, J.; Kim, O.-H.; Choi, I.; Sung, Y.-E.; Cho, Y.-H.; Rhee, C. K.; Shin, W. Appl. Catal. B:Environ. 2019, 253, 187.  doi: 10.1016/j.apcatb.2019.04.059

    44. [44]

      Tao, X.; Li, L.; Qi, X.; Wei, Z. Acta Chim. Sinica 2017, 75, 237.  doi: 10.11862/CJIC.2017.042

    45. [45]

      Guo, J. W.; Zhao, T. S.; Prabhuram, J.; Chen, R.; Wong, C. W. J. Power Sources 2006, 156, 345  doi: 10.1016/j.jpowsour.2005.05.093

  • 加载中
    1. [1]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    2. [2]

      Qing LiGuangxun ZhangYuxia XuYangyang SunHuan Pang . P-Regulated Hierarchical Structure Ni2P Assemblies toward Efficient Electrochemical Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(9): 2308045-0. doi: 10.3866/PKU.WHXB202308045

    3. [3]

      Liuyun ChenWenju WangTairong LuXuan LuoXinling XieKelin HuangShanli QinTongming SuZuzeng QinHongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054

    4. [4]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    5. [5]

      Fangxuan LiuZiyan LiuGuowei ZhouTingting GaoWenyu LiuBin Sun . 中空结构光催化剂. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-0. doi: 10.1016/j.actphy.2025.100071

    6. [6]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    7. [7]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    8. [8]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    9. [9]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    10. [10]

      Zhuo WangXue BaiKexin ZhangHongzhi WangJiabao DongYuan GaoBin Zhao . MOF-Templated Synthesis of Nitrogen-Doped Carbon for Enhanced Electrochemical Sodium Ion Storage and Removal. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-0. doi: 10.3866/PKU.WHXB202405002

    11. [11]

      Junjie TANGYunting ZHANGZhengjiang LIUJiani WU . Preparation of CeO2 by starch template method for photo-Fenton degradation of methyl orange. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1617-1631. doi: 10.11862/CJIC.20240420

    12. [12]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    13. [13]

      Wang WangYucheng LiuShengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059

    14. [14]

      Jingping LiSuding YanJiaxi WuQiang ChengKai Wang . Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4. Acta Physico-Chimica Sinica, 2025, 41(9): 100104-0. doi: 10.1016/j.actphy.2025.100104

    15. [15]

      Shijie RenMingze GaoRui-Ting GaoLei Wang . Bimetallic Oxyhydroxide Cocatalyst Derived from CoFe MOF for Stable Solar Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(7): 2307040-0. doi: 10.3866/PKU.WHXB202307040

    16. [16]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    17. [17]

      Xueting FengZiang ShangRong QinYunhu Han . Advances in Single-Atom Catalysts for Electrocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2305005-0. doi: 10.3866/PKU.WHXB202305005

    18. [18]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    19. [19]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    20. [20]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

Metrics
  • PDF Downloads(8)
  • Abstract views(1582)
  • HTML views(272)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return