Citation: Wang Zhitao, Li Hui, Yan Shichen, Fang Qianrong. Synthesis of a Two-dimensional Covalent Organic Framework with the Ability of Conducting Proton along Skeleton[J]. Acta Chimica Sinica, ;2020, 78(1): 63-68. doi: 10.6023/A19110397 shu

Synthesis of a Two-dimensional Covalent Organic Framework with the Ability of Conducting Proton along Skeleton

  • Corresponding author: Fang Qianrong, qrfang@jlu.edu.cn
  • Received Date: 7 November 2019
    Available Online: 10 January 2019

    Fund Project: Project supported by the National Natural Science Foundation of China (No. 21571079)the National Natural Science Foundation of China 21571079

Figures(10)

  • Nitrogen heterocyclic compound like imidazole and triazole are often loaded in porous material for proton conduction. Inspired by this, we employ 5, 5'-diamino-3, 3'-bis(1H-1, 2, 4-triazole) (BTDA) containing triazole fragments in the structure as the construction unit to react with 2, 4, 6-triformylphloroglucinol (TFP) through Schiff-base condensation reaction to synthesize a novel two-dimensional covalent organic framework named TFP-BTDA-COF. The theoretical results were simulated using the Accelrys Material Studios 7.0 software package and compared with the powder X-ray diffraction (PXRD) test data to confirm the crystal structure of TFP-BTDA-COF. The porosity and pore structure of TFP-BTDA-COF were characterized by N2 adsorption-desorption at 77 K. The condensation reaction was confirmed by Fourier transform infrared spectroscopy (FTIR). Due to the π-π accumulation of the 2D-COF, the N-H bond of the triazole in BTDA connecting unit is periodically and regularly arranged on each layer of the COF to form an ordered array. Under certain humidity conditions, the protons can be transmitted along the array in the one-dimensional pore channel by the intermediary of water molecules. Therefore, the TFP-BTDA-COF has the ability to conduct proton through the skeleton. The proton conductivity of TFP-BTDA-COF is tested by the AC impedance method. The results show that the proton conductivity of the material is gradually enhanced with the increase of the ambient humidity, and the maximum value is 1.4×10-3 S·cm-1 at 98% relative humidity. The PXRD of TFP-BTDA-COF in boiling water for 2 h and after 12 h AC impedance test were compared with the original experimental value to evaluate its tolerance under the working conditions of the proton membrane fuel cell. The PXRD diffraction peak intensity did not change obviously compared with that of the original experimental value. The thermogravimetric analysis results show that the thermal stability of TFP-BTDA-COF can reach high to 400℃. The above evidence proves that it has the potential to be used in proton membrane fuel cells.
  • 加载中
    1. [1]

      Jacobson, M. Z.; Colella, W. G.; Golden, D. M. Science 2005, 308, 1901.  doi: 10.1126/science.1109157

    2. [2]

      Wang, Y.; Chen, K.; Mishler, J.; Cho, S. C.; Adroher, X. C. Appl. Energy 2011, 88, 981.  doi: 10.1016/j.apenergy.2010.09.030

    3. [3]

      He, X.-Y.; Gang, M.-Y.; He, G.-W.; Yin, Y.-H.; Cao, L.; Wu, H.; Jiang, Z.-Y. Chin. J. Chem. 2017, 35, 673.  doi: 10.1002/cjoc.201600577

    4. [4]

      Chen, X.; Yan, H.-J.; Xia, D.-G. Acta Chim. Sinica 2017, 75, 189.  doi: 10.3969/j.issn.0253-2409.2017.02.008
       

    5. [5]

      Cui, L.-R.; Zhang, J.; Sun, Y.-Y.; Lu, S.-F.; Xiang, Y. Acta Chim. Sinica 2019, 77, 47.  doi: 10.7503/cjcu20180421
       

    6. [6]

      Zhong, G.-Y.; Wang, H.-J.; Yu, H.; Peng, F. Acta Chim. Sinica 2017, 75, 943.
       

    7. [7]

      Zhang, H.-W.; Shen, P.-K. Chem. Rev. 2012, 112, 2780.  doi: 10.1021/cr200035s

    8. [8]

      Mauritz, K. A.; Moore, R. B. Chem. Rev. 2004, 104, 4535.  doi: 10.1021/cr0207123

    9. [9]

      Nasef, M. M. Chem. Rev. 2014, 114, 12278.  doi: 10.1021/cr4005499

    10. [10]

      Shimizu, G. K. H.; Taylor, J. M.; Kim, S. Science 2013, 341, 354.  doi: 10.1126/science.1239872

    11. [11]

      Yoon, M.; Suh, K.; Natarajan, S.; Kim, K. Angew. Chem., Int. Ed. 2013, 52, 2688.  doi: 10.1002/anie.201206410

    12. [12]

      Yamada, T.; Otsubo, K.; Makiura, R.; Kitagawa, H. Chem. Soc. Rev. 2013, 42, 6655.  doi: 10.1039/c3cs60028a

    13. [13]

      Ramaswamy, P.; Wong, N. E.; Shimizu, G. K. H. Chem. Soc. Rev. 2014, 43, 5913.  doi: 10.1039/C4CS00093E

    14. [14]

      Matoga, D.; Oszajca, M.; Molenda, M. Chem. Commun. 2015, 51, 7637.  doi: 10.1039/C5CC01789K

    15. [15]

      Tang, Q.; Liu, Y.-W.; Liu, S.-X.; He, D.-F.; Miao, J.; Wang, X.-Q.; Yang, G.-C. J. Am. Chem. Soc. 2014, 136, 12444.  doi: 10.1021/ja5069855

    16. [16]

      Côté, A. P.; Benin, A. I.; Ockwig, N. W.; O'Keeffe, M.; Matzger, A. J.; Yaghi, O. M. Science 2005, 310, 1166.  doi: 10.1126/science.1120411

    17. [17]

      Ding, S.-Y.; Wang, W. Chem. Soc. Rev. 2013, 42, 548.  doi: 10.1039/C2CS35072F

    18. [18]

      Waller, P. J.; Gándara, F.; Yaghi, O. M. Acc. Chem. Res. 2015, 48, 3053.  doi: 10.1021/acs.accounts.5b00369

    19. [19]

      Chen, Q.-D.; Tang, J.-J.; Fang, Q.-R. Chem. J. Chin. Univ. 2018, 39, 2357.  doi: 10.7503/cjcu20180190

    20. [20]

      Zheng, C.-N.; Zhu, J.-H.; Yang, C.-Q.; Lu, C.-B.; Chen, Z.-Y.; Zhuang, X.-D. Sci. China Chem. 2019, 62, 1145.  doi: 10.1007/s11426-019-9477-y

    21. [21]

      Yuan, F.-Y.; Tan, J.; Guo, J. Sci. China Chem. 2018, 61, 143.  doi: 10.1007/s11426-017-9162-3

    22. [22]

      Huang, N.; Chen, X.; Krishna, R.; Jiang, D.-L. Angew. Chem., Int. Ed. 2015, 54, 2986.  doi: 10.1002/anie.201411262

    23. [23]

      Dogru, M.; Handloser, M.; Auras, F.; Kunz, T.; Medina, D.; Hartschuh, A.; Knochei, P.; Bein, T. Angew. Chem., Int. Ed. 2013, 52, 2920.  doi: 10.1002/anie.201208514

    24. [24]

      Cai, P.-W.; Peng, X.-X.; Huang, J.-H.; Jia, J.-C.; Hu, X.; Wen, Z.-H. Sci. China Chem. 2019, 62, 385.  doi: 10.1007/s11426-018-9395-1

    25. [25]

      Pang, C.-M.; Luo, S.-H.; Hao, Z.-F.; Gao, J.; Huang, Z.-H.; Yu, J.-H.; Yu, S.-M.; Wang, Z.-Y. Chin. J. Org. Chem. 2018, 38, 2606.
       

    26. [26]

      Peng, Z.-K.; Ding, H.-M.; Chen, R.-F.; Gao, C.; Wang, C. Acta Chim. Sinica 2019, 77, 681.
       

    27. [27]

      Chandra, S.; Kundu, T.; Kandambeth, S.; Babarao, R.; Marathe, Y.; Kunjir, S. M.; Banerjee, R. J. Am. Chem. Soc. 2014, 136, 6570.  doi: 10.1021/ja502212v

    28. [28]

      Xu, H.; Tao, S.-S.; Jiang, D. L. Nat. Mater. 2016, 15, 722.  doi: 10.1038/nmat4611

  • 加载中
    1. [1]

      Jianding LIJunyang FENGHuimin RENGang LI . Proton conductive properties of a Hf(Ⅳ)-based metal-organic framework built by 2,5-dibromophenyl-4,6-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1094-1100. doi: 10.11862/CJIC.20240464

    2. [2]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    3. [3]

      Lewang Yuan Yaoyao Peng Zong-Jie Guan Yu Fang . 二维共价有机框架作为光催化剂在有机合成中的研究进展. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-. doi: 10.1016/j.actphy.2025.100086

    4. [4]

      Fan Wu Wenchang Tian Jin Liu Qiuting Zhang YanHui Zhong Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031

    5. [5]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    6. [6]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    7. [7]

      Yan Liu Yuexiang Zhu Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084

    8. [8]

      Qiuting Zhang Fan Wu Jin Liu Zian Lin . Chromatographic Stationary Phase and Chiral Separation Using Frame Materials. University Chemistry, 2025, 40(4): 291-298. doi: 10.12461/PKU.DXHX202405174

    9. [9]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    10. [10]

      Weina Wang Fengyi Liu Wenliang Wang . “Extracting Commonality, Delving into Typicals, Deriving Individuality”: Constructing a Knowledge Graph of Crystal Structures. University Chemistry, 2024, 39(3): 36-42. doi: 10.3866/PKU.DXHX202308029

    11. [11]

      Junqiao Zhuo Xinchen Huang Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100

    12. [12]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    13. [13]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    14. [14]

      Hongjie SHENHaozhe MIAOYuhe YANGYinghua LIDeguang HUANGXiaofeng ZHANG . Synthesis, crystal structure, and fluorescence properties of two Cu(Ⅰ) complexes based on pyridyl ligand. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 855-863. doi: 10.11862/CJIC.20250009

    15. [15]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    16. [16]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    17. [17]

      Hexing SONGZan SUN . Synthesis, crystal structure, Hirshfeld surface analysis, and fluorescent sensing for Fe3+ of an Mn(Ⅱ) complex based on 1-naphthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 885-892. doi: 10.11862/CJIC.20240402

    18. [18]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    19. [19]

      Yongzhi LIHan ZHANGGangding WANGYanwei SUILei HOUYaoyu WANG . A two-dimensional metal-organic framework for the determination of nitrofurantoin and nitrofurazone in aqueous solution. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 245-253. doi: 10.11862/CJIC.20240307

    20. [20]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

Metrics
  • PDF Downloads(41)
  • Abstract views(2125)
  • HTML views(526)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return