Citation: Wang Zhiqiang, Bai Meidan, Zhang Ming, Zhang Zhiqiang, Feng Xun, Zheng Caijun. Synthesis and Properties of Two Novel Thermally Activated Delayed Fluorescence Materials with 1, 3, 5-Tribenzoylbenzene as Electron-Acceptor[J]. Acta Chimica Sinica, ;2020, 78(2): 140-146. doi: 10.6023/A19100372 shu

Synthesis and Properties of Two Novel Thermally Activated Delayed Fluorescence Materials with 1, 3, 5-Tribenzoylbenzene as Electron-Acceptor

  • Corresponding author: Wang Zhiqiang, wzq197811@lynu.edu.cn Zhang Zhiqiang,  Zheng Caijun, zhengcaijun@uestc.edu.cn
  • Received Date: 16 October 2019
    Available Online: 25 February 2019

    Fund Project: the Henan Natural Science Foundation 182300410230Project supported by the National Natural Science Foundation of China (No. 51773029) and the Henan Natural Science Foundation (No. 182300410230)the National Natural Science Foundation of China 51773029

Figures(9)

  • Two thermally activated delayed fluorescence (TADF) materials TBP-DmCz and TBP-TmCz were successfully synthesized using 1, 3, 5-tribenzoylbenzene (TBP) as electron-acceptor, 1, 8-dimethylcarbazole (DmCz) and 1, 3, 6, 8-tetra-methylcarbazole (TmCz) as electron-donor, respectively. Thermal gravimetric analysis show that the thermal decomposition temperatures (Td) are 479℃ for TBP-DmCz and 484℃ for TBP-TmCz and no glass transition was found for both materials during the differential scanning calorimetry investigations. The highest occupied molecular orbitals (HOMO) are confined on the carbazole unit, while the lowest unoccupied molecular orbitals (LUMO) are located on the 1, 3, 5-tribenzoylbenzene unit, and there is almost no overlap between HOMO and LUMO, which is the typical molecular orbital character of TADF materials. Meanwhile, TBP-DmCz and TBP-TmCz possess degenerated HOMO and LUMO, which would promote the radiative transitions as the transitions could take place from all degenerated LUMOs to HOMOs. The HOMO level of TBP-TmCz is obviously higher than that of TBP-DmCz due to increasing the number of methyl groups at the electron-donor carbazole, and the LUMO levels of TBP-DmCz and TBP-TmCz only show a small difference because these materials have the same electron-acceptor 1, 3, 5-tribenzoylbenzene. In toluene solution, these materials have very similar absorption spectra and exhibit absorption bands assigned to intramolecular charge-transfer transition. The spectral peaks are located at 488 nm for TBP-DmCz and 502 nm for TBP-TmCz, respectively, in toluene solution at room temperature. According to the fluorescence and phosphorescence spectra of these materials in 1, 3-bis(N-carbazolyl)benzene (mCP) film at 77 K, the energy gaps between the lowest singlet and triplet (ΔEST) of TBP-DmCz and TBP-TmCz are calculated to be 0.05 and 0.01 eV, respectively. The fluorescence decay behaviors at different temperatures (100, 200 and 300 K) proved that emissions of TBP-DmCz and TBP-TmCz contain TADF component. The electroluminescence devices with TBP-DmCz and TBP-TmCz as the emitters show high efficiency and low efficiency roll-off. The maximum external quantum efficiencies of devices based on TBP-DmCz and TBP-TmCz are 13.6% and 18.3%, respectively.
  • 加载中
    1. [1]

      Sun, Y. R.; Giebink, N. C.; Kanno, H.; Ma, B. W.; Thompson, M. E.; Forrest, S. R. Nature 2006, 440, 908.

    2. [2]

      Reineke, S.; Lindner, F.; Schwartz, G.; Seidler, N.; Walzer, K.; Lussem, B.; Leo, K. Nature 2009, 459, 234.

    3. [3]

      Helander, M. G.; Wang, Z. B.; Qiu, J.; Greiner, M. T.; Puzzo, D. P.; Liu, Z. W. Science 2011, 332, 944.

    4. [4]

      Han, T.-H.; Lee, Y.; Choi, M.-R.; Woo, S.-H.; Hong, B. H.; Ahn, J.-H.; Lee, T.-W. Nat. Photonics 2012, 459, 105.

    5. [5]

      Sasabe, H.; Kido, J. J. Mater. Chem. C 2013, 1, 1699.

    6. [6]

      Chen, S.; Dai, J.; Zhou, K.; Luo, Y.; Su, S.; Pu, X.; Huang, Y.; Lu, Z. Acta Chim. Sinica 2017, 75, 367.
       

    7. [7]

      Qiu, Z.; Tan, J.; Cai, N.; Wang, K.; Ji, S.; Huo, Y. Chin. J. Org. Chem. 2019, 39, 679.

    8. [8]

      He, X.; Xiao, Y.; Yuan, X.; Ye, S.; Jiang, H. Chin. J. Org. Chem. 2019, 39, 761.

    9. [9]

      Wang, F.; Cao, X.; Mei, L.; Zhang, X.; Hu, J.; Tao, Y. Chin. J. Chem. 2018, 36, 241.

    10. [10]

      Zhou, W.; Liu, Z.; Wang, Z.; Hu, S.; Liang, A. Chin. J. Org. Chem. 2019, 39, 1214.
       

    11. [11]

      Xu, H.; Chen, R.; Sun, Q.; Huang, W.; Liu, X. Chem. Soc. Rev. 2014, 43, 3259.

    12. [12]

      Volz, D.; Wallesch, M.; Fléchon, C.; Danz, M.; Verma, A.; Navarro, J. M.; Zink, D. M.; Bräse, S.; Baumann, T. Green Chem. 2015, 17, 1988.

    13. [13]

      Chi, Y.; Tong, B.; Chou, P.-T. Coord. Chem. Rev. 2014, 281, 1.

    14. [14]

      Uoyama, H.; Goushi, K.; Shizu, K.; Nomura, H.; Adachi, C. Nature 2012, 492, 234.

    15. [15]

      Dias, F. B.; Bourdakos, K. N.; Jankus, V.; Moss, K. C.; Kamtekar, K. T.; Bhalla, V.; Santos, J.; Bryce, M. R.; Monkman, A. P. Adv. Mater. 2013, 25, 3707.

    16. [16]

      Zhang, D. D.; Duan, L. A.; Li, Y. L.; Zhang, D. Q.; Qiu, Y. J. Mater. Chem. C 2014, 2, 8191.

    17. [17]

      Wang, H.; Xie, L.; Peng, Q.; Meng, L.; Wang, Y.; Yi, Y.; Wang, P. Adv. Mater. 2014, 26, 5198.

    18. [18]

      Mei, L.; Hu, J.; Cao, X.; Wang, F.; Zheng, C.; Tao, Y.; Zhang, X.; Huang, W. Chem. Commun. 2015, 51, 13024.

    19. [19]

      Cai, X.; Li, X.; Xie, G.; He, Z.; Gao, K.; Liu, K.; Chen, D.; Cao, Y.; Su, S. J. Chem. Sci. 2016, 7, 4264.

    20. [20]

      Meng, L.; Wang, H.; Wei, X.; Liu, J.; Chen, Y.; Kong, X.; Lv, X.; Wang, P.; Wang, Y. ACS Appl. Mater. Interfaces 2016, 8, 20955.
       

    21. [21]

      Wang, K.; Zheng, C. J.; Liu, W.; Liang, K.; Shi, Y. Z.; Tao, S. L.; Lee, C. S.; Ou, X. M.; Zhang, X. H. Adv. Mater. 2017, 29, 1701476.

    22. [22]

      Lee, J.; Aizawa, N.; Yasuda, T. Chem. Mater. 2017, 29, 8012.
       

    23. [23]

      Shi, Y. Z.; Wang, K.; Li, X.; Dai, G. L.; Liu, W.; Ke, K.; Zhang, M.; Tao, S. L.; Zheng, C. J.; Ou, X. M.; Zhang, X. H. Angew. Chem., Int. Ed. 2018, 57, 9480.

    24. [24]

      Yu, L.; Wu, Z.; Xie, G.; Zeng, W.; Ma, D.; Yang, C. Chem. Sci. 2018, 9, 1385.
       

    25. [25]

      Yang, Z.; Mao, Z.; Xu, C.; Chen, X.; Zhao, J.; Yang, Z.; Zhang, Y.; Wu, W.; Jiao, S.; Liu, Y.; Aldred, M. P.; Chi, Z. Chem. Sci. 2019, 10, 8129.

    26. [26]

      Zhang, M.; Liu, W.; Zheng, C. J.; Wang, K.; Shi, Y. Z.; Li, X.; Lin, H.; Tao, S. L.; Zhang, X. H. Adv. Sci. 2019, 6, 1801938.

    27. [27]

      Rajamalli, P.; Senthilkumar, N.; Gandeepan, P.; Huang, P. Y.; Huang, M. J.; Ren-Wu, C. Z.; Yang, C. Y.; Chiu, M. J.; Chu, L. K.; Lin, H. W.; Cheng, C. H. J. Am. Chem. Soc. 2016, 138, 628.

    28. [28]

      Xie, Z.; Chen, C.; Xu, S.; Li, J.; Zhang, Y.; Liu, S.; Xu, J.; Chi, Z. Angew. Chem., Int. Ed. 2015, 54, 7181.

    29. [29]

      Nikolaenko, A. E.; Cass, M.; Bourcet, F.; Mohamad, D.; Roberts, M. Adv. Mater. 2015, 27, 7236.

    30. [30]

      Di, D.; Romanov, A. S.; Yang, L.; Richter, J. M.; Rivett, J. P. H.; Jones, S.; Thomas, T. H.; Jalebi, M. A.; Friend, R. H.; Linnolahti, M.; Bochmann, M.; Credgington, D. Science 2017, 356, 159.

    31. [31]

      Wang, Z.; Zheng, C.; Wang, W.; Xu, C.; Ji, B.; Zhang, X. Inorg. Chem. 2016, 55, 2157.

    32. [32]

      Wang, Z.; Sun, X.; Xu, C.; Ji, B. Front. Chem. 2019, DOI:10. 3389/fchem. 2019.00422  doi: 10.3389/fchem.2019.00422

    33. [33]

      Song, X.; Zhang, D.; Lu, Y.; Yin, C.; Duan, L. Adv. Mater. 2019, 31, 1901923.

    34. [34]

      Kretzschmar, A.; Patze, C.; Schwaebel, S. T.; Bunz, U. H. F. J. Org. Chem. 2015, 80, 9126.

    35. [35]

      Zhu, Y.; Zhang, Y.; Yao, B.; Wang, Y.; Zhang, Z.; Zhan, H.; Zhang, B.; Xie, Z.; Wang, Y.; Cheng, Y. Macromolecules 2016, 49, 4373.

    36. [36]

      Wang, Z.; Cai, J.; Zhang, M.; Zheng, C.; Ji, B. Acta Chim. Sinica 2019, 77, 263.
       

    37. [37]

      Yang, Z.; Mao, Z.; Xie, Z.; Zhang, Y.; Liu, S.; Zhao, J.; Xu, J.; Chi Z.; Aldred, M. P. Chem. Soc. Rev. 2017, 46, 915.

    38. [38]

      Huang, T.; Jiang, W.; Duan, L. J. Mater. Chem. C 2018, 6, 5577.

    39. [39]

      Godumala, M.; Choi, S.; Cho, M. J.; Choi, D. H. J. Mater. Chem. C 2019, 7, 2172.

    40. [40]

      Cao, X.; Zhang, D.; Zhang, S.; Tao, Y.; Huang, W. J. Mater. Chem. C 2017, 5, 7699.
       

    41. [41]

      Godumala, M.; Choi, S.; Cho, M. J.; Choi, D. H. J. Mater. Chem. C 2016, 4, 11355.
       

    42. [42]

      Cai, X.; Chen, D.; Gao, K.; Gan, L.; Yin, Q.; Qiao, Z.; Chen, Z.; Jiang, X.; Su, S.-J. Adv. Funct. Mater. 2017, 27, 1704927.

    43. [43]

      Bai, M.-D.; Zhang, M.; Wang, K.; Shi, Y.-Z.; Chen, J.-X.; Lin, H.; Tao, S.-L.; Zheng, C.-J.; Zhang, X.-H. Org. Electron. 2018, 62, 220.

  • 加载中
    1. [1]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    2. [2]

      Xian BISisi WANGJinyue ZHANGYujia PENGZhen SHENHua LU . Discovery, development, and perspectives of circularly polarized luminescent materials based on β-isoindigo skeletons. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1049-1057. doi: 10.11862/CJIC.20240456

    3. [3]

      YanYuan Jia Rong Rong Jie Liu Jing Guo GuoYu Jiang Shuo Guo . Unity is Strength, and Independence Shines: A Science Popularization Experiment on AIE and ACQ Effects. University Chemistry, 2024, 39(9): 349-358. doi: 10.12461/PKU.DXHX202402035

    4. [4]

      Zehua Zhang Haitao Yu Yanyu Qi . 多重共振TADF分子的设计策略. Acta Physico-Chimica Sinica, 2025, 41(1): 2309042-. doi: 10.3866/PKU.WHXB202309042

    5. [5]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    6. [6]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    7. [7]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    8. [8]

      Han ZHANGJianfeng SUNJinsheng LIANG . Hydrothermal synthesis and luminescent properties of broadband near-infrared Na3CrF6 phosphor. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 349-356. doi: 10.11862/CJIC.20240098

    9. [9]

      Xuewei BACheng CHENGHuaikang ZHANGDeqing ZHANGShuhua LI . Preparation and luminescent performance of Sr1-xZrSi2O7xDy3+ phosphor with high thermal stability. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 357-364. doi: 10.11862/CJIC.20240096

    10. [10]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    11. [11]

      Yan ZHAOJiaxu WANGZhonghu LIChangli LIUXingsheng ZHAOHengwei ZHOUXiaokang JIANG . Gd3+-doped Sc2W3O12: Eu3+ red phosphor: Preparation and luminescence performance. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 461-468. doi: 10.11862/CJIC.20240316

    12. [12]

      Zishuo Yi Peng Liu Yan Xu . Fluorescent “Chameleon”: A Popular Science Experiment Based on Dynamic Luminescence. University Chemistry, 2024, 39(9): 304-310. doi: 10.12461/PKU.DXHX202311079

    13. [13]

      Zhengkun QINZicong PANHui TIANWanyi ZHANGMingxing SONG . A series of iridium(Ⅲ) complexes with fluorophenyl isoquinoline ligand and low-efficiency roll-off properties: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1235-1244. doi: 10.11862/CJIC.20240429

    14. [14]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    15. [15]

      Qin Li Kexin Yang Qinglin Yang Xiangjin Zhu Xiaole Han Tao Huang . Illuminating Chlorophyll: Innovative Chemistry Popularization Experiment. University Chemistry, 2024, 39(9): 359-368. doi: 10.3866/PKU.DXHX202309059

    16. [16]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    17. [17]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    18. [18]

      Borong Yu Huijiao Zhang Xinyu Zhang Xiaoying Li Shuming Chen Zhangang Han . The Blue Elf in the Dark: Gradient Science Popularization Experiments on Chemiluminescence. University Chemistry, 2024, 39(9): 295-303. doi: 10.12461/PKU.DXHX202403107

    19. [19]

      Xiaxue Chen Yuxuan Yang Ruolin Yang Yizhu Wang Hongyun Liu . Adjustable Polychromatic Fluorescence: Investigating the Photoluminescent Properties of Copper Nanoclusters. University Chemistry, 2024, 39(9): 328-337. doi: 10.3866/PKU.DXHX202308019

    20. [20]

      Yanting HUANGHua XIANGMei PAN . Construction and application of multi-component systems based on luminous copper nanoclusters. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2075-2090. doi: 10.11862/CJIC.20240196

Metrics
  • PDF Downloads(7)
  • Abstract views(750)
  • HTML views(143)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return