Citation: Tian Haiquan, Zheng Li-Min. Cyclic Lanthanide-based Molecular Clusters: Assembly and Single Molecule Magnet Behavior[J]. Acta Chimica Sinica, ;2020, 78(1): 34-55. doi: 10.6023/A19090330 shu

Cyclic Lanthanide-based Molecular Clusters: Assembly and Single Molecule Magnet Behavior

  • Corresponding author: Zheng Li-Min, lmzheng@nju.edu.cn
  • Received Date: 6 September 2019
    Available Online: 6 January 2019

    Fund Project: the National Key R & D Program of China 2018YFA0306004the National Natural Science Foundation of China 21731003Project supported by the National Key R&D Program of China (Nos. 2017YFA0303203, 2018YFA0306004) and the National Natural Science Foundation of China (No. 21731003)the National Key R & D Program of China 2017YFA0303203

Figures(34)

  • Lanthanide-based single molecule magnets have received tremendous attentions in recent years owing to the strong magnetic anisotropies of the lanthanide ions arising from the strong spin-orbital couplings. Cyclic metal clusters, also called molecular wheels or metallacrown ether, are a subclass of metal clusters. From the magnetic point of view, cyclic transition metal clusters can be devided into three types, e.g. ferromagnetically coupled cyclic clusters which favor single molecule magnet behavior, and antiferromagnetically coupled even-or odd-numbered cyclic clusters with S=0 or S=1/2 ground state. The magnetic properties of lanthanide-based cyclic clusters are more complicated because the magnetic interactions between the lanthanide ions are extremely weak. The overall magnetic behavior is largely dominated by the single ion anisotropy and the dipole-dipole interactions between the metal ions. When the anisotropy axes of the lanthanide ions in the cyclic clusters are arranged in a toroidal manner, single-molecule toroics could be achieved. Therefore, the design and synthesis of cyclic lanthanide-based clusters can provide not only new materials with architectural beauty and single molecule magnet behavior, but also single-molecule toroics with vortex distribution of the magnetic dipoles of lanthanide ions, which would have potential applications in information storage, quantum computing, spintronic devices and multiferroic materials. Noting that lanthanide-based single-molecule toroics have been described detailly in several reviews, this article will summarize the current status of the cyclic lanthanide clusters with the focus on the design and assembly strategies, the structural characteristics and magnetic studies. Most work have been concentrated on the Ln3, Ln4 and Ln6 cyclic clusters, including those containing oxygen centers. Examples of even-numbered cyclic clusters Lnx (x ≥ 8) are much less, and those of odd-numbered cyclic clusters Lnx (x ≥ 5) are rare. As the cyclic clusters are frequently distorted to different extent, many of them exhibit single molecule magnet behavior, and only few of them show toroic magnetization. It remains future challenges to design and synthesize new lanthanide-based cyclic clusters with regular and flat geometries and toroically arranged magnetic moments, and to achieve the multifunctions in the same molecular composite.
  • 加载中
    1. [1]

      Sessoli, R.; Gatteschi, D.; Caneschi, A.; Novak, M. A. Nature 1993, 365, 141.  doi: 10.1038/365141a0

    2. [2]

      Milios, C. J.; Vinslava, A.; Wernsdorfer, W.; Moggach, S.; Parsons, S.; Perlepes, S. P.; Christou, G.; Brechin, E. K. J. Am. Chem. Soc. 2007, 129, 2754.  doi: 10.1021/ja068961m

    3. [3]

      (a) Ishikawa, N.; Sugita, M.; Ishikawa, T.; Koshihara, S.-y.; Kaizu, Y. J. Am. Chem. Soc. 2003, 125, 8694. (b) Ishikawa, N.; Sugita, M.; Wernsdorfer, W. J. Am. Chem. Soc. 2005, 127, 3650. (c) Ishikawa, N.; Sugita, M.; Wernsdorfer, W. Angew. Chem. Int. Ed. 2005, 44, 2931.

    4. [4]

    5. [5]

      Blagg, R. J.; Muryn, C. A.; McInnes, E. J. L.; Tuna, F.; Winpenny, R. E. P. Angew. Chem. Int. Ed. 2011, 50, 6530.  doi: 10.1002/anie.201101932

    6. [6]

      Rinehart, J. D.; Fang, M.; Evans, W. J.; Long, J. R. Nat. Chem. 2011, 3, 538.  doi: 10.1038/nchem.1063

    7. [7]

      Chen, Y.-C.; Liu, J.-L.; Ungur, L.; Liu, J.; Li, Q.-W.; Wang, L.-F.; Ni, Z.-P.; Chibotaru, L. F.; Chen, X.-M.; Tong, M.-L. J. Am. Chem. Soc. 2016, 138, 2829.  doi: 10.1021/jacs.5b13584

    8. [8]

      (a) Goodwin, C. A. P.; Ortu, F.; Reta, D.; Chilton, N. F.; Mills, D. P. Nature 2017, 548, 439. (b) Guo, F.-S.; Day, B. M.; Chen, Y.-C.; Tong, M.-L.; Mansikkamäki, A.; Layfield, R. A. Angew. Chem. Int. Ed. 2017, 56, 11445. (c) Guo, F.-S.; Day, B. M.; Chen, Y.-C.; Tong, M.-L.; Mansikkamäki, A.; Layfield, R. A. Science 2018, 362, 1400.

    9. [9]

      Mezei, G.; Zaleski, C. M.; Pecoraro, V. L. Chem. Rev. 2007, 107, 4933.  doi: 10.1021/cr078200h

    10. [10]

      Saalfrank, R. W.; Bernt, I.; Uller, E.; Hampel, F. Angew. Chem. Int. Ed. 1997, 36, 2482.  doi: 10.1002/anie.199724821

    11. [11]

      McInnes, E. J. L.; Timco, G. A.; Whitehead, G. F. S.; Winpenny, R. E. P. Angew. Chem. Int. Ed. 2015, 54, 14244.  doi: 10.1002/anie.201502730

    12. [12]

      Cadiou, C.; Murrie, M.; Paulsen, C.; Villar, V.; Wernsdorfer, W.; Winpenny, R. E. P. Chem. Commun. 2001, 2666.

    13. [13]

      (a) Waldmann, O. Coord. Chem. Rev. 2005, 249, 2550. (b) Lante, V.; Rousochatzakis, I.; Penc, K.; Waldmann, O.; Mila, F. Phys. Rev. B 2009, 79, 180412(R).

    14. [14]

      (a) Schnack, J. Dalton Trans. 2010, 39, 4677. (b) Bramwell, S. T.; Gingras, M. J. P. Science 2001, 294, 1495. (c) Struck, J.; Olschlager, C.; Le Targat, R.; Soltan-Panahi, P.; Eckardt, A.; Lewenstein, M.; Windpassinger, P.; Sengstock, K. Science 2011, 333, 996.

    15. [15]

      Cador, O.; Gatteschi, D.; Sessoli, R.; Larsen, F. K.; Overgaard, J.; Barra, A.-L.; Teat, S. J.; Timco, G. A.; Winpenny, R. E. P. Angew. Chem. Int. Ed. 2004, 43, 5196.  doi: 10.1002/anie.200460211

    16. [16]

      Baker, M. L.; Timco, G. A.; Piligkos, S.; Mathieson, J. S.; Mutka, H.; Tuna, F.; Kozłowski, P.; Antkowiak, M.; Guidi, T.; Gupta, T.; Rath, H.; Woolfson, R. J.; Kamieniarz, G.; Pritchard, R. G.; Weihe, H.; Cronin, L; Rajaraman, G.; Collison, D.; McInnes, E. J. L.; Winpenny, R. E. P. Proc. Natl. Acad. Sci. U. S. A. 2012, 109, 19113.  doi: 10.1073/pnas.1213127109

    17. [17]

      Yao, H.-C.; Wang, J.-J.; Ma, Y.-S.; Waldmann, O.; Du, W.-X.; Song, Y.; Li, Y.-Z.; Zheng, L.-M.; Decurtins, S.; Xin, X.-Q. Chem. Commun. 2006, 1745.

    18. [18]

      Hoshino, N.; Nakano, M.; Nojiri, H.; Wernsdorfer, W.; Oshio, H. J. Am. Chem. Soc. 2009, 131, 15100.  doi: 10.1021/ja9066496

    19. [19]

      Fernandez, A.; Ferrando-Soria, J.; Pineda, E. M.; Tuna, F.; Vitorica-Yrezabal, I. J.; Knappke, C.; Ujma, J.; Muryn, C. A.; Timco, G. A.; Barran, P. E.; Ardavan, A.; Winpenny, R. E. P. Nat. Commun. 2016, 7, 10240.  doi: 10.1038/ncomms10240

    20. [20]

      Bernot, K.; Luzon, J.; Bogani, L.; Etienne, M.; Sangregorio, C.; Shanmugam, M.; Caneschi, A.; Sessoli, R.; Gatteschi, D. J. Am. Chem. Soc. 2009, 131, 5573.  doi: 10.1021/ja8100038

    21. [21]

      (a) Ungur, L.; Lin, S.-Y.; Tang, J.; Chibotaru, L. F. Chem. Soc. Rev. 2014, 43, 6894. (b) Tang, J.; Zhang, P. In Lanthanide Single Molecule Magnets, Springer Berlin Heidelberg, Berlin, Heidelberg, 2015, Chapter 4, pp. 127~166. (c) Li, X.-L.; Tang, J. Dalton Trans. 2019, 48, 15358.

    22. [22]

      Tang, J.; Hewitt, I. J.; Madhu, N. T.; Chastanet, G.; Wernsdorfer, W.; Anson, C. E.; Benelli, C.; Sessoli, R.; Powell, A. K. Angew. Chem., Int. Ed. 2006, 45, 1729.  doi: 10.1002/anie.200503564

    23. [23]

      (a) Chibotaru, L. F.; Ungur, L.; Soncini, A. Angew. Chem. Int. Ed. 2008, 47, 4126. (b) Luzon, J.; Bernot, K.; Hewitt, I. J.; Anson, C. E.; Powell, A. K.; Sessoli, R. Phys. Rev. Lett. 2008, 100, 247205.

    24. [24]

      Plokhov, D. I.; Popov, A. I.; Zvezdin, A. K. Phys. Rev. B: Condens. Matter Mater. Phys. 2011, 84, 224436.  doi: 10.1103/PhysRevB.84.224436

    25. [25]

      Costes, J.-P.; Dahan, F.; Nicodème, F. Inorg. Chem.2001, 40, 5285.  doi: 10.1021/ic0103704

    26. [26]

      Salman, Z.; Giblin, S. R.; Lan, Y.; Powell, A. K.; Scheuermann, R.; Tingle, R.; Sessoli, R. Phys. Rev. B 2010, 82, 174427.  doi: 10.1103/PhysRevB.82.174427

    27. [27]

      Xue, S.; Chen, X.-H.; Zhao, L.; Guo, Y.-N.; Tang, J. Inorg. Chem.2012, 51, 13264.  doi: 10.1021/ic301785v

    28. [28]

      (a) Shen, S.; Xue, S.; Lin, S.-Y.; Zhao, L.; Tang, J. Dalton Trans. 2013, 42, 10413. (b) Hänninen, M. M.; Mota, A. J.; Aravena, D.; Ruiz, E.; Sillanpää, R.; Evangelisti, M.; Colacio, E. Chem. Eur. J. 2014, 20, 8410.

    29. [29]

      Zhang, L.; Zhang, P.; Zhao, L.; Wu, J.; Guo, M.; Tang, J. Inorg. Chem.2015, 54, 5571.  doi: 10.1021/acs.inorgchem.5b00702

    30. [30]

      Lin, S.-Y.; Zhao, L.; Guo, Y.-N.; Zhang, P.; Guo, Y.; Tang, J. Inorg. Chem.2012, 51, 10522.  doi: 10.1021/ic300371m

    31. [31]

      Dolinar, B. S.; Alexandropoulos, D. I.; Vignesh, K. R.; James, T.; Dunbar, K. R. J. Am. Chem. Soc.2018, 140, 908.  doi: 10.1021/jacs.7b12495

    32. [32]

      Wang, Y.-X.; Shi, W.; Li, H.; Song, Y.; Fang, L.; Lan, Y.; Powell, A. K.; Wernsdorfer, W.; Ungur, L.; Chibotaru, L. F.; Shen, M.; Cheng, P. Chem. Sci. 2012, 3, 3366.  doi: 10.1039/c2sc21023a

    33. [33]

      (a) Lin, S.-Y.; Guo, Y.-N.; Zhao, L.; Zhang, P.; Ke, H.; Tang, J. Chem. Commun.2012, 48, 6924. (b) Lin, S.-Y.; Wang, C.; Zhao, L.; Tang, J. Chem. Asian J.2014, 9, 3558.

    34. [34]

      Gould, C. A.; Darago, L. E.; Gonzalez, M. I.; Demir, S.; Long, J. R. Angew. Chem. Int. Ed. 2017, 56, 10103.  doi: 10.1002/anie.201612271

    35. [35]

      Woodruff, D. N.; Tuna, F.; Bodensteiner, M.; Winpenny, R. E. P.; Layfield, R. A. Organometallics 2013, 32, 1224.  doi: 10.1021/om3010096

    36. [36]

      Pineda, E. M.; Lan, Y.; Fuhr, O.; Wernsdorfer, W.; Ruben, M. Chem. Sci. 2017, 8, 1178.  doi: 10.1039/C6SC03184F

    37. [37]

      Guo, P.-H.; Liu, J.; Wu, Z.-H.; Yan, H.; Chen, Y.-C.; Jia, J.-H.; Tong, M.-L. Inorg. Chem.2015, 54, 8087.  doi: 10.1021/acs.inorgchem.5b01322

    38. [38]

      Xue, S.; Zhao, L.; Guo, Y.-N.; Chen, X.-H.; Tang, J. Chem. Commun.2012, 48, 7031.  doi: 10.1039/c2cc31864d

    39. [39]

      Wu, S.-Q.; Xie, Q.-W.; An, G.-Y.; Chen, X.; Liu, C.-M.; Kou, H.-Z. Dalton Trans. 2013, 42, 4369.  doi: 10.1039/c3dt50265a

    40. [40]

      Anwar, M. U.; Thompson, L. K.; Dawe, L. N.; Habib, F.; Murugesu, M. Chem. Commun. 2012, 48, 4576.  doi: 10.1039/c2cc17546k

    41. [41]

      Das, C.; Vaidya, S.; Gupta, T.; Frost, J. M.; Righi, M.; Brechin, E. K.; Affronte, M.; Rajaraman, G.; Shanmugam, M. Chem.-Eur. J.2015, 21, 15639.  doi: 10.1002/chem.201502720

    42. [42]

      Wu, J.; Lin, S.-Y.; Shen, S.; Li, X.-L.; Zhao, L.; Zhang, L.; Tang, J. Dalton Trans. 2017, 46, 1577.  doi: 10.1039/C6DT04456E

    43. [43]

      Xue, S.; Zhao, L.; Guo, Y.-N.; Tang, J. Dalton Trans. 2012, 41, 351.  doi: 10.1039/C1DT11883H

    44. [44]

      Lu, J.; Zhang, Y.-Q.; Li, X.-L.; Guo, M.; Wu, J.; Zhao, L.; Tang, J. Inorg. Chem. 2019, 58, 5715.  doi: 10.1021/acs.inorgchem.9b00067

    45. [45]

      Bi, Y.; Wang, X.-T.; Liao, W.; Wang, X.; Deng, R.; Zhang, H.; Gao, S. Inorg. Chem.2009, 48, 11743.  doi: 10.1021/ic9017807

    46. [46]

      Tian, H.; Su, J.-B.; Bao, S.-S.; Kurmoo, M.; Huang, X.-D.; Zhang, Y.-Q.; Zheng, L.-M. Chem. Sci. 2018, 9, 6424.  doi: 10.1039/C8SC01228H

    47. [47]

      (a) Langley, S. K.; Moubaraki, B.; Forsyth, C. M.; Gass, I. A.; Murray, K. S. Dalton Trans. 2010, 39, 1705. (b) Ungur, L.; Langley, S. K.; Hooper, T. N.; Moubaraki, B. E.; Brechin, K.; Murray, K. S.; Chibotaru, L. F. J. Am. Chem. Soc. 2012, 134, 18554.

    48. [48]

      Baniodeh, A.; Magnani, N.; Bräse, S.; Anson, C. E.; Powell, A. K. Dalton Trans. 2015, 44, 6343.  doi: 10.1039/C5DT00237K

    49. [49]

      Tian, H.; Bao, S.-S.; Zheng, L.-M. Dalton Trans. 2015, 44, 14208.  doi: 10.1039/C5DT02468D

    50. [50]

      Joarder, B.; Mukherjee, S.; Xue, S.; Tang, J.; Ghosh, S. K. Inorg. Chem. 2014, 53, 7554.  doi: 10.1021/ic500875m

    51. [51]

      Tian, H.; Bao, S.-S.; Zheng, L.-M. Eur. J. Inorg. Chem.2016, 3184.

    52. [52]

      Lu, J.; Montigaud, V.; Cador, O.; Wu, J.; Zhao, L.; Li, X.-L.; Guo, M.; Le Guennic, B.; Tang, J. Inorg. Chem. 2019, 58, 11903.  doi: 10.1021/acs.inorgchem.9b01068

    53. [53]

      Tian, H.; Bao, S.-S.; Zheng, L.-M. Chem. Commun. 2016, 52, 2314.  doi: 10.1039/C5CC08740F

    54. [54]

      Tian, H.; Zhao, L.; Tang, J. Cryst. Growth. Des. 2018, 18, 1173.  doi: 10.1021/acs.cgd.7b01612

    55. [55]

      Chandrasekhar, V.; Bag, P.; Colacio, E. Inorg. Chem. 2013, 52, 4562.  doi: 10.1021/ic400091j

    56. [56]

      Kajiwara, T.; Wu, H.; Ito, T.; Iki, N.; Miyano, S. Angew. Chem. Int. Ed. 2004, 43, 1832.  doi: 10.1002/anie.200353449

    57. [57]

      Westin, L. G.; Kritikos, M.; Caneschi, A. Chem. Commun. 2003, 1012.

    58. [58]

      Das, S.; Dey, A.; Kundu, S.; Biswas, S.; Narayanan, R. S.; Titos-Padilla, S.; Lorusso, G.; Evangelisti, M.; Colacio, E.; Chandrasekhar, V. Chem.-Eur. J.2015, 21, 16955.  doi: 10.1002/chem.201501992

    59. [59]

      Kajiwara, T.; Katagiri, K.; Takaishi, S.; Yamashita, M.; Iki, N. Chem. Asian J. 2006, 1, 349.  doi: 10.1002/asia.200600057

    60. [60]

      Zhao, L.; Xue, S.; Tang, J. Inorg. Chem. 2012, 51, 5994.  doi: 10.1021/ic3005807

    61. [61]

      Wang, K.; Chen, Z.-L.; Zou, H.-H.; Hu, K.; Li, H.-Y.; Zhang, Z.; Sun, W.-Y.; Liang, F.-P. Chem. Commun. 2016, 52, 8297.  doi: 10.1039/C6CC02208A

    62. [62]

      Biswas, S.; Das, S.; Acharya, J.; Kumar, V.; van Leusen, J.; Kögerler, P.; Herrera, J. M.; Colacio, E.; Chandrasekhar, V. Chem.-Eur. J. 2017, 23, 5154.  doi: 10.1002/chem.201700471

  • 加载中
    1. [1]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    2. [2]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

    3. [3]

      Renjie XueChao MaJing HeXuechao LiYanning TangLifeng ChiHaiming Zhang . Catassembly in the Host-Guest Recognition of 2D Metastable Self-Assembled Networks. Acta Physico-Chimica Sinica, 2024, 40(9): 2309011-0. doi: 10.3866/PKU.WHXB202309011

    4. [4]

      Hongdao LIShengjian ZHANGHongmei DONG . Magnetic relaxation and luminescent behavior in nitronyl nitroxide-based annuluses of rare-earth ions. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 972-978. doi: 10.11862/CJIC.20230411

    5. [5]

      Yinling HOUJia JIHong YUXiaoyun BIANXiaofen GUANJing QIUShuyi RENMing FANG . A rhombic Dy4-based complex showing remarkable single-molecule magnet behavior. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 605-612. doi: 10.11862/CJIC.20240251

    6. [6]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    7. [7]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    8. [8]

      Wenjian Zhang Mengxin Fan Wenwen Fei Wei Bai . Cultivation of Critical Thinking Ability: Based on RAFT Polymerization-Induced Self-Assembly. University Chemistry, 2025, 40(4): 108-112. doi: 10.12461/PKU.DXHX202406099

    9. [9]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    10. [10]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    11. [11]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    12. [12]

      Jinrong Bao Jinglin Zhang Wenxian Li Xiaowei Zhu . 苯甲酸稀土配合物的制备及性能表征——基于应用化学专业人才培养的综合化学实验案例分析. University Chemistry, 2025, 40(8): 218-224. doi: 10.12461/PKU.DXHX202409142

    13. [13]

      Shiyi WANGChaolong CHENXiangjian KONGLansun ZHENGLasheng LONG . Polynuclear lanthanide compound [Ce4Ce6(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 88-96. doi: 10.11862/CJIC.20240342

    14. [14]

      Qin Hou Jiayi Hou Aiju Shi Xingliang Xu Yuanhong Zhang Yijing Li Juying Hou Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056

    15. [15]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

    16. [16]

      Jingwen Wang Minghao Wu Xing Zuo Yaofeng Yuan Yahao Wang Xiaoshun Zhou Jianfeng Yan . Advances in the Application of Electrochemical Regulation in Investigating the Electron Transport Properties of Single-Molecule Junctions. University Chemistry, 2025, 40(3): 291-301. doi: 10.12461/PKU.DXHX202406023

    17. [17]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    18. [18]

      Rui LiHuan LiuYinan JiaoShengjian QinJie MengJiayu SongRongrong YanHang SuHengbin ChenZixuan ShangJinjin Zhao . Emerging Irreversible and Reversible Ion Migrations in Perovskites. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-0. doi: 10.3866/PKU.WHXB202311011

    19. [19]

      Yuxia Luo Xiaoyu Xie Fangfang Chen . 药物递送魔法师——分子印迹聚合物. University Chemistry, 2025, 40(8): 202-210. doi: 10.12461/PKU.DXHX202409129

    20. [20]

      Zhiwen HUANGQi LIUJianping LANG . W/Cu/S cluster-based supramolecular macrocycles and their third-order nonlinear optical responses. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 79-87. doi: 10.11862/CJIC.20240184

Metrics
  • PDF Downloads(42)
  • Abstract views(3612)
  • HTML views(717)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return