Citation: Zhao Weichen, Xu Xin, Bai Huijuan, Zhang Jin, Lu Shanfu, Xiang Yan. Self-crosslinked Polyethyleneimine-polysulfone Membrane for High Temperature Proton Exchange Membrane[J]. Acta Chimica Sinica, ;2020, 78(1): 69-75. doi: 10.6023/A19090329 shu

Self-crosslinked Polyethyleneimine-polysulfone Membrane for High Temperature Proton Exchange Membrane

  • Corresponding author: Zhang Jin, zhangjin1@buaa.edu.cn Lu Shanfu, lusf@buaa.edu.cn
  • Received Date: 5 September 2019
    Available Online: 11 January 2019

    Fund Project: Beijing Municipal Science and Technology Project Z181100004518004the National Key R & D Program of China 2018YFA0702003the National Natural Science Foundation of China 21908001Beijing Natural Science Foundation of China 2194076Project supported by the National Key R & D Program of China (No. 2018YFA0702003), Beijing Natural Science Foundation of China (No. 2194076), the National Natural Science Foundation of China (Nos. 21722601, 21576007, 21908001), Beijing Municipal Science and Technology Project (Z181100004518004) and the Fundamental Research Funds for the Central Universitiesthe National Natural Science Foundation of China 21722601the National Natural Science Foundation of China 21576007

Figures(8)

  • High temperature proton exchange membrane fuel cells (HT-PEMFC) operated at a temperature range from 120℃ to 200℃ show high reaction kinetics, high tolerance of the Pt catalyst for impurities such as carbon monoxide and simplified water and heat management. HT-PEMFC has attracted great attentions in many applications including portable devices, unmanned vehicles and fuel cell cars. One of the essential components of the HT-PEMFC is high temperature proton exchange membrane (HT-PEM). The state-of-the-art HT-PEM is phosphoric acid (PA) doped polybenzimidazole (PBI) composite membrane. Phosphoric acid acts as the proton conductor while the PBI plays as a skeleton to hold the PA molecules and provides mechanical strength for the composite membrane. Nevertheless, the complex fabrication procedures and expensive cost hinder wide application of PBI in HT-PEMFC. Alternative polymer skeletons including polyvinylpyrrolidone and amino-functionalized proton exchange membrane have been developed for the HT-PEM. Generally, the high proton conductivity of the HT-PEMs results from high doping level of PA. However, the plasticizer effect of PA molecules reduces the Van der Waals force among the polymer macromolecules. That leads to the low mechanical strength of the HT-PEMs. Cross-linking method significantly increases the mechanical strength of the HT-PEMs. On the other hand, the cross-linking reaction consumes the PA doping site of the HT-PEMs, leading to the low proton conductivity of these HT-PEMs. In this research, a novel self-crosslinked polyethyleneimine-polysulfone (PEI-PSF) HT-PEM with both high mechanical strength and high proton conductivity has been designed. The PEI molecules are anchored to the PSF backbones by chloromethylation and tertiary aminating reactions. That is prone to enhance the mechanical strength of the membrane. In addition, the PEI also acts as PA adsorption sites, which improves the PA doping level and proton conductivity of the HT-PEM. The degree of crosslinking is controlled by the degree of chloromethylation. The 1H nuclear magnetic resonance characterization shows successfully graft of benzyl chloride onto the PSF backbone to form chloromethylated polysulfone (CMPSF). In addition, the X-ray photoelectron spectra confirm the reaction of PEI with CMPSF to form a self-crosslinked PEI-PSF membrane. With the increase of crosslinking degree, the PA doping level of the PEI-PSF membrane increases whereas its tensile strength decreases. A proton conductivity of 3.4×10-2 S·cm-1 is obtained for a PEI-PSF membrane with a chloromethylation degree of 58%, denoted as PEI-PSF-58, and PA doping level of 122 wt% at 150℃ under anhydrous conditions. Meanwhile, the PEI-PSF-58 membrane remains excellent mechanical property with tensile strength of 30 MPa at room temperature. Moreover, HT-PEMFC based on the PEI-PSF-58 membrane exhibits a high peak power density of 200 mW·cm-2 and outstanding stability under 150℃ with a constant cell voltage of 0.4 V. In summary, a series of self-crosslinked PEI-PSF HT-PEMs with both high proton conductivity and excellent mechanical properties have been synthesized. The self-crosslinking is a promising strategy to cope with trade-off between high proton conductivity and mechanical strength for the conventional PA doped HT-PEMs.
  • 加载中
    1. [1]

      Wang, M.; Chen, M.; Yang, Z. Y.; Liu, G. C.; Lee, J. K.; Yang, W.; Wang, X. D. Energy Convers. Manage. 2019, 191, 132.  doi: 10.1016/j.enconman.2019.04.014

    2. [2]

      Peng, S.-K.; Xu, X.; Zhang, J.; Liu, Y.-Y.; Lu, S.-F.; Xiang, Y. Acta Chim. Sinica 2015, 73, 137.  doi: 10.3866/PKU.WHXB201411171
       

    3. [3]

      Huang, W.-J.; Zhang, H.-Y.; Hu, S.-Z.; Niu, D.-F.; Zhang, X.-S. Acta Chim. Sinica 2018, 76, 723.
       

    4. [4]

      Zhong, G.-Y.; Wang, H.-J.; Yu, H.; Peng, F. Acta Chim. Sinica 2017, 75, 943.
       

    5. [5]

      Zhu, H.; Luo, M.-C.; Cai, Y.-Z.; Sun, Z.-N. Acta Phys-Chim. Sinica 2016, 32, 2462.  doi: 10.3866/PKU.WHXB201606293

    6. [6]

      Cui, L.-R.; Zhang, J.; Sun, Y.-Y.; Lu, S.-F.; Xiang, Y. Acta Chim. Sinica 2019, 77, 47.  doi: 10.7503/cjcu20180421
       

    7. [7]

      Li, H.; Li, L.; Chen, S.; Zhang, Y.; Li, G. Chinese J. Chem. 2017, 35, 903.  doi: 10.1002/cjoc.201600740

    8. [8]

      Chen, X.; Yan, H.-J.; Xia, D.-G. Acta Chim. Sinica 2017, 75, 189.  doi: 10.3969/j.issn.0253-2409.2017.02.008
       

    9. [9]

      Xu, X.; Peng, S.-K.; Zhang, J.; Lu, S.-F.; Xiang, Y. Acta Chim. Sinica 2016, 74, 271.
       

    10. [10]

      Guo, Z. B.; Xu, X.; Xiang, Y.; Lu, S. F.; Jiang, S. P. J. Mater. Chem. A 2015, 3, 148.  doi: 10.1039/C4TA04952G

    11. [11]

      Lu, S. F.; Wang, D. L.; Jiang, S. P.; Xiang, Y.; Lu, J. L.; Zeng, J. Adv. Mater. 2010, 22, 971.  doi: 10.1002/adma.200903091

    12. [12]

      Guo, Z. B.; Xiu, R. J.; Lu, S. F.; Xu, X.; Yang, S. C.; Xiang, Y. J. Mater. Chem. A 2015, 3, 8847.  doi: 10.1039/C5TA00415B

    13. [13]

      Zhang, J.; Xiang, Y.; Lu, S. F.; Jiang, S. P. Adv. Sustainable Syst. 2018, 2, 1700184.  doi: 10.1002/adsu.201700184

    14. [14]

      Jiao, K.; Li, X. G. Prog. Energy Combust. Sci. 2011, 37, 221.  doi: 10.1016/j.pecs.2010.06.002

    15. [15]

      Li, Q. F.; Jensen, J. O.; Savinell, R. F.; Bjerrum, N. J. Prog. Polym. Sci. 2009, 34, 449.  doi: 10.1016/j.progpolymsci.2008.12.003

    16. [16]

      Xu, X.; Wang, H. N.; Lu, S. F.; Guo, Z. B.; Rao, S. Y.; Xiu, R. J.; Xiang, Y. J. Power Sources 2015, 286, 458.  doi: 10.1016/j.jpowsour.2015.04.028

    17. [17]

      Lu, S.-F.; Xu, X.; Zhang, J.; Xiang, Y. Sci. Sin. Chim. 2017, 47, 565.
       

    18. [18]

      Pan, H. Y.; Chen, S. X.; Zhang, Y. Y.; Jin, M.; Chang, Z. H.; Pu, H. T. J. Membr. Sci. 2015, 476, 87.  doi: 10.1016/j.memsci.2014.11.023

    19. [19]

      Zhang, B. P.; Ni, J. P.; Xiang, X. Z.; Wang, L.; Chen, Y. M. J. Power Sources 2017, 337, 110.  doi: 10.1016/j.jpowsour.2016.10.102

    20. [20]

      Yang, J. S.; Li, Q. F.; Cleemann, L. N.; Jensen, J. O.; Pan, C.; Bjerrum, N. J.; He, R. H. Adv. Energy Mater. 2013, 3, 622.  doi: 10.1002/aenm.201200710

    21. [21]

      Wang, S. M.; Li, Z. H.; Lu, C. J. Colloid Interface Sci. 2015, 458, 315.  doi: 10.1016/j.jcis.2015.07.056

    22. [22]

      Bo, W.; Li, H. X.; Zhang, J. J.; Song, X. J.; Hu, J. S.; Liu, C. Environ. Technol. 2016, 37, 3062.  doi: 10.1080/21622515.2016.1175513

    23. [23]

      Ates, S.; Tatar-Guner, P.; Yagci, Y.; Levent Demirel, A. Des. Monomers Polym. 2012, 16, 137.

    24. [24]

      Gao, B. J.; Zhang, D. D.; Li, Y. B. J. Polym. Res. 2018, 25, 158.  doi: 10.1007/s10965-018-1553-z

    25. [25]

      Zhang, J. J.; Zhang, J.; Bai, H. J.; Tan, Q. L.; Wang, H. N.; He, B. S.; Xiang, Y.; Lu, S. F. J. Membr. Sci. 2019, 572, 496.  doi: 10.1016/j.memsci.2018.11.035

    26. [26]

      Qiu, J. H.; Zhang, Y. W.; Zhang, Y. T.; Zhang, H. Q.; Liu, J. D. J. Colloid Interface Sci. 2011, 354, 152.  doi: 10.1016/j.jcis.2010.09.090

    27. [27]

      Beamson, G.; Briggs, D. J. Chem. Educ. 1993, 70, A25.  doi: 10.1016/0003-2670(93)80419-L

    28. [28]

      Bébin, P.; Galiano, H. Adv. Polym. Technol. 2006, 25, 121.  doi: 10.1002/adv.20066

    29. [29]

      Genova-Dimitrova, P.; Baradie, B.; Foscallo, D.; Poinsignon, C.; Sanchez, J. Y. J. Membr. Sci. 2001, 185, 59.  doi: 10.1016/S0376-7388(00)00634-7

    30. [30]

      Iojoiu, C.; Genova-Dimitrova, P.; Maréchal, M.; Sanchez, J. Y. Electrochim. Acta 2006, 51, 4789.  doi: 10.1016/j.electacta.2006.01.022

    31. [31]

      Hu, X.-L.; Tang, W.-Y.; He, S.-Y. Acta Sci. Circumst. 2017, 37, 4129.  doi: 10.13198/j.issn.1001-6929.2017.02.60

    32. [32]

      Wang, J.; Jiang, H. X.; Xu, Y. X.; Yang, J. S.; He, R. H. Appl. Surf. Sci. 2018, 452, 473.  doi: 10.1016/j.apsusc.2018.05.063

    33. [33]

      Lobato, J.; Cañizares, P.; Rodrigo, M. A.; Linares, J. J.; Aguilar, J. A. J. Membr. Sci. 2007, 306, 47.  doi: 10.1016/j.memsci.2007.08.028

    34. [34]

      Bose, S.; Kuila, T.; Nguyen, T. X. H.; Kim, N. H.; Lau, K.-t.; Lee, J. H. Prog. Polym. Sci. 2011, 36, 813.  doi: 10.1016/j.progpolymsci.2011.01.003

    35. [35]

      He, R. H. J. Membr. Sci. 2003, 226, 169.  doi: 10.1016/j.memsci.2003.09.002

    36. [36]

      Ma, Y. L.; Wainright, J. S.; Litt, M. H.; Savinell, R. F. J. Electrochem. Soc. 2004, 151, A8.  doi: 10.1149/1.1630037

    37. [37]

      Tang, Q. W.; Cai, H. Y.; Yuan, S. S.; Wang, X.; Yuan, W. Q. Int. J. Hydrogen Energy 2013, 38, 1016.  doi: 10.1016/j.ijhydene.2012.10.107

    38. [38]

      Yang, J. S.; Li, Q. F.; Jensen, J. O.; Pan, C.; Cleemann, L. N.; Bjerrum, N. J.; He, R. H. J. Power Sources 2012, 205, 114.  doi: 10.1016/j.jpowsour.2012.01.038

    39. [39]

      Sood, R.; Donnadio, A.; Giancola, S.; Kreisz, A.; Jones, D. J.; Cavaliere, S. ACS Appl. Mater. Interfaces 2016, 8, 16897.  doi: 10.1021/acsami.6b02713

    40. [40]

      Yang, J. S.; Wang, J.; Liu, C.; Gao, L. P.; Xu, Y. X.; Che, Q. T.; He, R. H. J. Membr. Sci. 2015, 493, 80.  doi: 10.1016/j.memsci.2015.06.010

    41. [41]

      Wang, J.; Zheng, J. F.; Zhao, Z.; Zhang, S. B. J. Mater. Chem. 2012, 22, 706.  doi: 10.1039/c2jm15131f

    42. [42]

      Inaba, M.; Kinumoto, T.; Kiriake, M.; Umebayashi, R.; Tasaka, A.; Ogumi, Z. Electrochim. Acta 2006, 51, 5746.  doi: 10.1016/j.electacta.2006.03.008

    43. [43]

      Virkar, A. V.; Zhou, Y. K. J. Electrochem. Soc. 2007, 154, B540.  doi: 10.1149/1.2722563

    44. [44]

      Roen, L. M.; Paik, C. H.; Jarvic, T. D. Electrochem. Solid-State Lett. 2004, 7, 19.

  • 加载中
    1. [1]

      Feng Zheng Ruxun Yuan Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027

    2. [2]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    3. [3]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    4. [4]

      Qinjin DAIShan FANPengyang FANXiaoying ZHENGWei DONGMengxue WANGYong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326

    5. [5]

      Xiaomei Ning Liang Zhan Xiaosong Zhou Jin Luo Xunfu Zhou Cuifen Luo . Preparation and Electro-Oxidation Performance of PtBi Supported on Carbon Cloth: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 217-224. doi: 10.3866/PKU.DXHX202401085

    6. [6]

      Yanglin Jiang Mingqing Chen Min Liang Yige Yao Yan Zhang Peng Wang Jianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 100012-. doi: 10.3866/PKU.WHXB202309027

    7. [7]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    8. [8]

      Lingbang Qiu Jiangmin Jiang Libo Wang Lang Bai Fei Zhou Gaoyu Zhou Quanchao Zhuang Yanhua Cui . 原位电化学阻抗谱监测长寿命热电池Nb12WO33正极材料的高温双放电机制. Acta Physico-Chimica Sinica, 2025, 41(5): 100040-. doi: 10.1016/j.actphy.2024.100040

    9. [9]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    10. [10]

      Jiahe LIUGan TANGKai CHENMingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023

    11. [11]

      Pengyang FANShan FANQinjin DAIXiaoying ZHENGWei DONGMengxue WANGXiaoxiao HUANGYong ZHANG . Preparation and performance of rich 1T-MoS2 nanosheets for high-performance aqueous zinc ion battery cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 675-682. doi: 10.11862/CJIC.20240339

    12. [12]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    13. [13]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    14. [14]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    15. [15]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    16. [16]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    17. [17]

      Yipeng Zhou Chenxin Ran Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096

    18. [18]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    19. [19]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    20. [20]

      Shunliu Deng Haifeng Su Yaxian Zhu Yuzhi Wang Yuhua Weng Zhaobin Chen Shunü Peng Yinyun Lü Xinyi Hong Yiru Wang Xiaozhen Huang Zhimin Lin Lansun Zheng . Course Ideological and Political Design for Self-Building Experiments of Scientific Instruments: Taking the Construction, Debugging, and Application of Teaching Mass Spectrometer as an Example. University Chemistry, 2024, 39(2): 127-132. doi: 10.3866/PKU.DXHX202308002

Metrics
  • PDF Downloads(27)
  • Abstract views(2207)
  • HTML views(563)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return