Citation: Guo Wenjuan, Yu Jie, Dai Zhao, Hou Weizhao. A New Method for Enriching baicalin in Scutellaria baicalensis Georgi by Metal Organic Framework Material ZIF-8[J]. Acta Chimica Sinica, ;2019, 77(11): 1203-1210. doi: 10.6023/A19080316 shu

A New Method for Enriching baicalin in Scutellaria baicalensis Georgi by Metal Organic Framework Material ZIF-8

  • Corresponding author: Guo Wenjuan, guowenjuan@tjpu.edu.cn
  • Received Date: 29 August 2019
    Available Online: 21 November 2019

Figures(12)

  • This work aims to explore a new method for the efficient enrichment of baicalin in Scutellaria baicalensis Georgi by using metal organic frameworks (MOFs) materials, and to open up new applications for MOFs in the adsorption direction. The zeolitic imidazolate framework-8 (ZIF-8) was synthesized by solvothermal method and characterized by structure to ensure its accurate synthesis. Baicalin was extracted from Scutellaria baicalinsis Georgi by ethanol extraction and acid precipitation method. The ZIF-8 was used to carry out the static adsorption experiment on the crude extract of Radix Scutellariae. After the adsorption equilibrium was reached, the mixture was centrifuged, and the residual concentration of baicalin was detected by high performance liquid chromatography method (HPLC). The recovered saturated adsorbed ZIF-8 material was washed with water and dried, and the phosphate buffered saline (PBS) solution of pH 6.8 was used as a desorption solution, and the desorption was performed by shaking. The content of baicalin in the desorbed solution was determined by HPLC to calculate the desorption rate and achieve the purpose of adsorbent recovery. In the adsorbing process, the effects of adsorbent dosage, pH and adsorbate concentration of the crude extract of Radix Scutellariae were also optimized, and the response surface test (RSM) was performed using Design Expert software to obtain optimal adsorption conditions. Under these conditions, the adsorption rate of ZIF-8 to baicalin in Radix Scutellariae was as high as 98.22%, and the adsorption effect was not significant on other components in Radix Scutellariae. The desorption rate of ZIF-8 adsorbed baicalin in pH 6.8 solution was 62.46%, and the purity of baicalin increased from 21.55% before adsorption to 64.27% after desorption, and ZIF-8 had good stability before and after adsorption, and the recovery rate reached 83.50%. Therefore, ZIF-8 has potential application value in the adsorption and purification of baicalin. The adsorption law and mechanism of ZIF-8 on baicalin were studied:The adsorption of baicalin on ZIF-8 accorded with the quasi-second-order kinetic equation, and the equilibrium adsorption data accorded with the Langmuir adsorption isotherm model.
  • 加载中
    1. [1]

      Farha, O. K.; Hupp, J. T. Acc. Chem. Res. 2010, 43, 1166.  doi: 10.1021/ar1000617

    2. [2]

      Elsaidi, S. K.; Mohamed, M. H.; Banerjee, D.; Thallapally, P. K. Coord. Chem. Rev. 2017, 358, 125.

    3. [3]

      Yang, T.; Cui, Y. N.; Chen, H. Y.; Li, W. H. Acta Chim. Sinica 2017, 75, 339(in Chinese).
       

    4. [4]

      Zhang, H.; Li, G. L.; Zhang, K. G.; Liao, C. Y. Acta Chim. Sinica 2017, 75, 841(in Chinese).
       

    5. [5]

      Cheon, Y. E.; Park, J.; Suh, M. P. Chem. Commun. 2009, 36, 5436.
       

    6. [6]

      Baa, E.; Watkins, G. M.; Krause, R. W.; Tantoh, D. N. Chin. J. Chem. 2019, 37, 387.

    7. [7]

      Pang, C. M.; Luo, S. H.; Hao, Z. F.; Gao, J.; Huang, Z. H.; Yu, J. H.; Yu, S. M.; Wang, Z. Y. Chin. J. Org. Chem. 2018, 38, 2606(in Chinese).
       

    8. [8]

      Tang, Y. Z.; Huang, H. L.; Peng, Y. G.; Ruan, Q. Q.; Wang, K. K.; Yi, P. D.; Liu, D. H.; Zhong, C. L. Chin. J. Chem. 2017, 35, 1091.  doi: 10.1002/cjoc.201600876

    9. [9]

      Wu, Z. M.; Shi, Y.; Li, C. Y.; Niu, D. Y.; Chu, Q.; Xiong, W.; Li, X. Y. Acta Chim. Sinica 2019, 77, 758(in Chinese).
       

    10. [10]

      Guo, X. L.; Chen, X.; Su, D. S.; Liang, C. H. Acta Chim. Sinica 2018, 76, 22(in Chinese).  doi: 10.3866/PKU.WHXB201706302
       

    11. [11]

      Yang, X. P.; Guo, X. X.; Zhang, C. H.; Wang, X. P.; Yang, Y.; Li, Y. W. Acta Chim. Sinica 2017, 75, 360(in Chinese).
       

    12. [12]

      Chouhan, A.; Pilet, G.; Daniele, S.; Pandey, A. Chin. J. Chem. 2017, 35, 209.  doi: 10.1002/cjoc.201600685

    13. [13]

      Zhang, W. Q.; Li, Q. Y.; Yang, X. Y.; Ma, Z.; Wang, H. H.; Wang, X. J. Acta Chim. Sinica 2017, 75, 80(in Chinese).  doi: 10.3866/PKU.WHXB201607293
       

    14. [14]

      Mohamedali, M.; Ibrahim, H.; Henni, A. Chem. Eng. J. 2018, 334, 817.  doi: 10.1016/j.cej.2017.10.104

    15. [15]

      Bian, L.; Li, W.; Wei, Z. Z.; Liu, X. W.; Li, S. Acta Chim. Sinica 2018, 76, 303(in Chinese)  doi: 10.3866/PKU.WHXB201708302
       

    16. [16]

      Massoudinejad, M.; Ghaderpoori, M.; Shahsavani, A.; Amini, M. M. J. Mol. Liq. 2016, 221, 279.  doi: 10.1016/j.molliq.2016.05.087

    17. [17]

      Chen, Z. Y.; Liu, J. W.; Cui, H.; Zhang, L.; Su, C. Y. Acta Chim. Sinica 2019, 77, 242(in Chinese).  doi: 10.3969/j.issn.0253-2409.2019.02.014
       

    18. [18]

      Li, Y.; Zou, B.; Xiao, A. S.; Zhang, H. X. Chin. J. Chem. 2017, 35, 1501.  doi: 10.1002/cjoc.201700151

    19. [19]

      Hasan, Z.; Jhung, S. H. J. Hazard. Mater. 2015, 283, 329.  doi: 10.1016/j.jhazmat.2014.09.046

    20. [20]

      Pi, Y. H.; Li, X. Y.; Xia, Q. B.; Wu, J. L.; Li, Y. W.; Xiao, J.; Li, Z. Chem. Eng. J. 2018, 337, 351.  doi: 10.1016/j.cej.2017.12.092

    21. [21]

      Dai, J.; Xiao, X.; Duan, S. X.; Liu, J.; He, J.; Lei, J. D.; Wang, L. Y. Chem. Eng. J. 2018, 331, 64.  doi: 10.1016/j.cej.2017.08.090

    22. [22]

      Massoudinejad, M.; Ghaderpoori, M.; Shahsavani, A.; Jafari, A.; Kamarehie, B.; Ghaderpoury, A.; Amini, M. M. J. Mol. Liq. 2018, 255, 263.  doi: 10.1016/j.molliq.2018.01.163

    23. [23]

      Li, J.; Wu, Y. N.; Li, Z. H.; Zhang, B. R.; Zhu, M.; Hu, X.; Zhang, Y. M.; Li, F. T. J. Phys. Chem. C 2014, 118, 47.
       

    24. [24]

      Sun, X.; Hu, C. Q.; Huang, X. D.; Dong, J. C. Chin. J. Org. Chem. 2003, 23, 81(in Chinese).
       

    25. [25]

      Chou, T. C.; Chang, L. P.; Li, C. Y.; Wong, C. S.; Yang, S. P. Anesth. Analg. 2003, 97, 1724.  doi: 10.1213/01.ANE.0000087066.71572.3F

    26. [26]

      Dinda, B.; Dinda, S.; DasSharma, S.; Banik, R.; Chakraborty, A.; Dinda, M. Eur. J. Med. Chem. 2017, 131, 68.  doi: 10.1016/j.ejmech.2017.03.004

    27. [27]

      Li-Weber, M. Cancer Treat. Rev. 2009, 35, 57.  doi: 10.1016/j.ctrv.2008.09.005

    28. [28]

      Ikemoto, S.; Sugimura, K.; Yoshida, N.; Yasumoto, R.; Wada, S.; Yamamoto, K.; Kishimoto, T. J. Urol. 2000, 55, 951.  doi: 10.1016/S0090-4295(00)00467-2

    29. [29]

      Wu, J. A.; Attele, A. S.; Zhang, L.; Yuan, C. S. Am. J. Chin. Med. 2001, 29, 69.  doi: 10.1142/S0192415X01000083

    30. [30]

      Liang, W.; Huang, X. B.; Chen, W. Q. Aging Dis. 2017, 8, 850.  doi: 10.14336/AD.2017.0829

    31. [31]

      Mou, X. L.; Zhang, W. P.; Chen, Z. L. J. Appl. Polym. Sci. 2013, 130, 1873.  doi: 10.1002/app.39410

    32. [32]

      Wang, H.; Ma, X. D.; Cheng, Q. B.; Wang, L.; Zhang, L. W. Molecules 2018, 23, 3233.  doi: 10.3390/molecules23123233

    33. [33]

      Srinivas, N. R. Xenobiotica 2010, 40, 357.  doi: 10.3109/00498251003663724

    34. [34]

      Huang, X. C.; Lin, Y. Y.; Zhang, J. P.; Chen, X. M. Angew. Chem., Int. Ed. 2005, 45, 1557.

    35. [35]

      Park, K. S.; Ni, Z.; Cote, A. P.; Choi, J. Y.; Huang, R. D.; Uribe-Romo, F. J.; Chae, H. K.; O'Keeffe, M.; Yaghi, O. M. Proc. Natl. Acad. Sci. 2006, 103, 10186.  doi: 10.1073/pnas.0602439103

    36. [36]

      Yao, J. F.; Wang, H. T. Chem. Soc. Rev. 2014, 43, 4470.  doi: 10.1039/C3CS60480B

    37. [37]

      Phan, A.; Doonan, C. J.; Uribe-Romo, F. J.; Knobler, C. B.; O'Keeffe, M.; Yaghi, O. M. Acc. Chem. Res. 2010, 43, 58.  doi: 10.1021/ar900116g

    38. [38]

      Lai, Z. P. Curr. Opin. Chem. Eng. 2018, 20, 78.  doi: 10.1016/j.coche.2018.03.002

    39. [39]

      Pan, Y. C.; Liu, Y. Y.; Zeng, G. F.; Zhao, L.; Lai, Z. P. Chem. Commun. 2011, 47, 2071.  doi: 10.1039/c0cc05002d

    40. [40]

      The Pharmacopoeia Commission of PRC, The Pharmacopoeia of the People's Republic of China, Part I, Chemical Industry Publishing Press, Beijing, China, 2015, pp. 301~302(in Chinese).

    41. [41]

      Li, W. S.; Chen, X. Chinese Traditional and Herbal Drugs 2000, 31, 107(in Chinese).  doi: 10.3321/j.issn:0253-2670.2000.02.016

    42. [42]

      Dai, Q.; Lei, X. R.; Yang, J. H.; Cheng, Q.; Gao, C.; Li, H. Acta Chim. Sinica 2009, 67, 2363(in Chinese).  doi: 10.3321/j.issn:0251-0790.2009.12.007

    43. [43]

      Ni, Z. M.; Wang, Q. Q.; Yao, P.; Liu, X. M.; Li, Y. Acta Chim. Sinica 2011, 69, 529(in Chinese).
       

    44. [44]

      Fan, C. H.; Zhang, Y. C.; Zhang, Y. Acta Chim. Sinica 2010, 68, 2175(in Chinese).
       

    45. [45]

      Cao, X. Y.; Li, L.; Chen, H. Acta Chim. Sinica 2010, 68, 1461(in Chinese).
       

    46. [46]

      Venna, S. R.; Carreon, M. A. J. Am. Chem. Soc. 2010, 132, 76.  doi: 10.1021/ja909263x

    47. [47]

      Xu, Y. L.; Li, X.; Lin, Y. Q.; Malde, C.; Wang, R. J. Membr. Sci. 2019, 585, 238.  doi: 10.1016/j.memsci.2019.05.042

  • 加载中
    1. [1]

      Wei Li Jinfan Xu Yongjun Zhang Ying Guan . 共价有机框架整体材料的制备及食品安全非靶向筛查应用——推荐一个仪器分析综合化学实验. University Chemistry, 2025, 40(6): 276-285. doi: 10.12461/PKU.DXHX202406013

    2. [2]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    3. [3]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    4. [4]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    5. [5]

      Jianding LIJunyang FENGHuimin RENGang LI . Proton conductive properties of a Hf(Ⅳ)-based metal-organic framework built by 2,5-dibromophenyl-4,6-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1094-1100. doi: 10.11862/CJIC.20240464

    6. [6]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    7. [7]

      Xueqi YangJuntao ZhaoJiawei YeDesen ZhouTingmin DiJun Zhang . 调节NNU-55(Fe)的d带中心以增强CO2吸附和光催化活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100074-0. doi: 10.1016/j.actphy.2025.100074

    8. [8]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    9. [9]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    10. [10]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    11. [11]

      Hui WangAbdelkader LabidiMenghan RenFeroz ShaikChuanyi Wang . Recent Progress of Microstructure-Regulated g-C3N4 in Photocatalytic NO Conversion: The Pivotal Roles of Adsorption/Activation Sites. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-0. doi: 10.1016/j.actphy.2024.100039

    12. [12]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    13. [13]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    14. [14]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    15. [15]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    16. [16]

      Zhuo WangXue BaiKexin ZhangHongzhi WangJiabao DongYuan GaoBin Zhao . MOF-Templated Synthesis of Nitrogen-Doped Carbon for Enhanced Electrochemical Sodium Ion Storage and Removal. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-0. doi: 10.3866/PKU.WHXB202405002

    17. [17]

      Yinjie XuSuiqin LiLihao LiuJiahui HeKai LiMengxin WangShuying ZhaoChun LiZhengbin ZhangXing ZhongJianguo Wang . Enhanced Electrocatalytic Oxidation of Sterols using the Synergistic Effect of NiFe-MOF and Aminoxyl Radicals. Acta Physico-Chimica Sinica, 2024, 40(3): 2305012-0. doi: 10.3866/PKU.WHXB202305012

    18. [18]

      Zehao ZhangZheng WangHaibo Li . Preparation of 2D V2O3@Pourous Carbon Nanosheets Derived from V2CFx MXene for Capacitive Desalination. Acta Physico-Chimica Sinica, 2024, 40(8): 2308020-0. doi: 10.3866/PKU.WHXB202308020

    19. [19]

      Chongjing LiuYujian XiaPengjun ZhangShiqiang WeiDengfeng CaoBeibei ShengYongheng ChuShuangming ChenLi SongXiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 2309036-0. doi: 10.3866/PKU.WHXB202309036

    20. [20]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

Metrics
  • PDF Downloads(13)
  • Abstract views(2181)
  • HTML views(355)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return