Citation: Shi Lei, Pang Hongwei, Wang Xiangxue, Zhang Pan, Yu Shujun. Study on the Migration and Transformation Mechanism of Graphene Oxide in Aqueous Solutions[J]. Acta Chimica Sinica, ;2019, 77(11): 1177-1183. doi: 10.6023/A19070276 shu

Study on the Migration and Transformation Mechanism of Graphene Oxide in Aqueous Solutions

  • Corresponding author: Yu Shujun, sjyu@ncepu.edu.cn
  • Received Date: 26 July 2019
    Available Online: 24 November 2019

Figures(5)

  • Graphene oxide (GO) is widely used in energy chemical, environmental restoration, nanomaterials, liquid phase catalysis, etc. due to its excellent physical and chemical properties. At the same time, GO is inevitably discharged into nature during the application process, and the toxicity released into the environment may lead to instability of the biological system. Therefore, this paper systematically studied several common cations (Na+, K+, Ca2+, Mg2+), anions (PO43-, SO42-, CO32-, HCO3-, Cl-) and clay minerals (montmorillonite, kaolin, bentonite, nano-alumina) on GO coagulation at different concentrations. And FTIR is used to characterize the clay minerals before and after the precipitation of GO. The experimental results show that the cations have strong GO coagulation ability, and the coagulation ability of different valence cations has a large difference. After analysis, the electrical properties of GO in aqueous solution are negative, the cation acts as a counter ion, and the coagulation behavior conforms to the Schulze-Hardy rule. The main reason for the difference in coagulation ability between isovalent cations is electronegativity and ionic hydration. The anion acts to increase the stability of GO, and the coagulation ability of the cation is more effective than the stabilization ability of the anion. The ability of sodium salts with the same valence anion to coagulate GO also differs, mainly because the hydrolysis of HCO3- and CO32- causes a decrease in the negative charges, resulting in a decrease in the ability to stabilize GO. The clay minerals contain hydroxyl and metal-oxygen bonds that interact with GO. According to the maximum removal rate, the clay minerals have the coagulation ability:nano-alumina > kaolin > bentonite > montmorillonite. The main influencing factors are the electrical properties of clay minerals in aqueous solution. This paper is helpful to understand the coagulation behavior of GO in different water environments, and it is of great significance for the future application of graphene engineering in pollution control.
  • 加载中
    1. [1]

      Loh, K. P.; Bao, Q. L.; Ang, P. K.; Yang, J. X. J. Mater. Chem. 2010, 20, 2277.  doi: 10.1039/b920539j

    2. [2]

      Dreyer, D. R.; Park, S. J.; Bielawski, C. W.; Ruoff, R. S. Chem. Soc. Rev. 2010, 39, 228.  doi: 10.1039/B917103G

    3. [3]

      Chen, D.; Feng, H.; Li, J. Chem. Rev. 2012, 112, 6027.  doi: 10.1021/cr300115g

    4. [4]

      Stoller, M. D.; Park, S. J.; Zhu, Y. W.; An, j.; Ruoff, R. S. Nano Lett. 2008, 8, 3498.  doi: 10.1021/nl802558y

    5. [5]

      Zhao, K. L.; Hao, Y.; Zhu, M.; Cheng, G. S. Acta Chim. Sinica. 2018, 76, 168(in Chinese).  doi: 10.3866/PKU.WHXB201707111
       

    6. [6]

      Zhang, S. W.; Zhang, J.; Wu, S. D.; lv, W.; Kang, F. Y.; Yang, Q. H. Acta. Chim. Sinica. 2017, 75, 163(in Chinese).  doi: 10.11862/CJIC.2017.023
       

    7. [7]

      Zhong, G. Y.; Wang, H. J.; Yu, H.; Peng, F. Acta Chim. Sinica. 2017, 75, 943(in Chinese).
       

    8. [8]

      Wang, X.; Li, Y. B.; Du, L. Y.; Gao, F. J.; Wu, Q.; Yang, L. J.; Chen, Q.; Wang, X. J.; Hu, Z. Acta Chim. Sinica. 2018, 76, 627(in Chinese).  doi: 10.11862/CJIC.2018.081
       

    9. [9]

      Lu, J. H.; Tan, S. Z.; Zhu, Y. Q.; Li, W.; Chen, T. X.; Wang, Y.; Liu, C. Acta Chim. Sinica. 2019, 77, 253(in Chinese).
       

    10. [10]

      Ma, W. H.; Chang, Y. Z.; Han, G. Y.; Xiao, Y. M.; Fu, D. Y.; Chang, Y. H.; Chinese J. Chem. 2017, 35, 1844.  doi: 10.1002/cjoc.201700398

    11. [11]

      Yang, X. L.; Cai, H. Y.; Bao, M. Y.; Yu, J. Q.; Lu, J. R.; Li, Y. M. Chinese J. Chem. 2017, 35, 1549.  doi: 10.1002/cjoc.201700202

    12. [12]

      Li, M. Y.; Liu, R. Q.; Han, G. Y.; Tian, Y. N.; Chang, Y. Z.; Xiao, Y. M. Chinese J. Chem. 2017, 35, 1405.  doi: 10.1002/cjoc.201700061

    13. [13]

      Song, C. Y.; Sun, X.; Ye, K.; Zhu, K.; Cheng, H.; Yan, J.; Cao, D. X.; Wang, G. L. Acta. Chim. Sinica. 2017, 75, 1003(in Chinese).
       

    14. [14]

      Liao, K. H.; Lin, Y. S.; Macosko, C. W.; Haynes, C. L. ACS Appl. Mater. Interfaces 2011, 3, 2607.  doi: 10.1021/am200428v

    15. [15]

      Gao, Y.; Chen, K.; Ren, X. M.; Ahmed, A.; Tasawar, H.; Chen, C. L. Environ. Sci. Technol. 2018, 52, 12208.  doi: 10.1021/acs.est.8b02234

    16. [16]

      Gao, Y; Wu, J. C.; Ren, X. M.; Tan X. L.; Tasawar, H.; Ahmed, A.; Cheng, C.; Chen, C. L. Environ. Sci.:Nano 2017, 4, 1016.  doi: 10.1039/C7EN00052A

    17. [17]

      Gao, Y.; Ren, X. M.; Wu, J. C.; Tasawar, H.; Ahmed, A.; Cheng, C.; Chen, C. l. Environ. Sci.:Nano 2018, 5, 362.  doi: 10.1039/C7EN01012E

    18. [18]

      Wang, J.; Yao, W.; Gu, P. C.; Yu, S. J.; Wang, X. X.; Du, Y.; Wang, H. Q.; Chen, Z. S.; Hayat, T.; Wang, X. K. Cellulose 2016, 24, 85.

    19. [19]

      Vallabani, N. V. S.; Mittal, S.; Shukla, R. K.; Pandey, A. K.; Dhakate, S. R.; Pasricha, R.; Dhawan, A. J. Biomed. Nanotechnol. 2011, 7, 106.  doi: 10.1166/jbn.2011.1224

    20. [20]

      Akhavan, O.; Ghaderi, E. ACS Nano 2010, 4, 5731.  doi: 10.1021/nn101390x

    21. [21]

      Hu, J.; Zhang, C. X.; Jiang, L.; Fang, S. D.; Zhang, X. D.; Wang, X. K.; Meng, Y. D. J. Power Sources 2014, 248, 831.  doi: 10.1016/j.jpowsour.2013.09.099

    22. [22]

      Zaghouane-Boudiaf, H.; Boutahala, M.; Arab, L. Chem. Eng. J. 2012, 187, 142.  doi: 10.1016/j.cej.2012.01.112

    23. [23]

      Wang, J.; Wang, X. X.; Tan, L. Q.; Chen, Y. T.; Hayat, T.; Hu, J.; Alsaedi, A.; Ahmad, B.; Guo, W.; Wang, X. K. Chem. Eng. J. 2016, 297, 106.  doi: 10.1016/j.cej.2016.04.012

    24. [24]

      Meunier, N.; Drogui, P.; Montane, C.; Hausler, R.; Mercier, G.; Blais, J. F. J. Hazard. Mater. 2006, 137, 581.  doi: 10.1016/j.jhazmat.2006.02.050

    25. [25]

      Qiang, S. R.; Wang, M. Y.; Liang, J. J.; Zhao, X. L.; Fan, Q. H.; Geng, R. Y.; Luo, D. X.; Li, Z. B.; Zhang, L. Mater. Chem. Phys. 2020, 239, 122016.  doi: 10.1016/j.matchemphys.2019.122016

    26. [26]

      Yang, K. J.; Chen, B. L.; Zhu, X. Y.; Xing, B. S. Environ. Sci. Technol. 2016, 50, 11066.  doi: 10.1021/acs.est.6b04235

    27. [27]

      Chowdhury, I.; Mansukhani, N. D.; Guiney, L. M.; Hersam, M. C.; Bouchard, D. Environ. Sci. Technol. 2015, 49, 10886.  doi: 10.1021/acs.est.5b01866

    28. [28]

      Zeng, Z. Y.; Wang, Y. L.; Zhou, Q. B.; Yang, K.; Lin, D. H. Environ. Pollut. 2019, 250, 366.  doi: 10.1016/j.envpol.2019.03.112

    29. [29]

      Zhao, J.; Liu, F. F.; Wang, Z. Y.; Cao, X. S.; Xing, B. S. Environ. Sci. Technol. 2015, 49:2849.  doi: 10.1021/es505605w

    30. [30]

      Liang, J. J.; Li, P.; Zhao, X. L.; Liu, Z. Y.; Fan, Q. H.; Li, Z.; Wang, D. Q. Nanoscale 2018, 3, 1383.

    31. [31]

      Park, C. M.; Chu, K. H.; Heo, J.; Her, N.; Jang, M.; Son, A.; Yoon, Y. J. Hazard. Mater. 2016, 309, 133.  doi: 10.1016/j.jhazmat.2016.02.006

    32. [32]

      Li, N.; Ma, J. Z.; Bao, Y. Chem. Res. 2009, 20, 98(in Chinese).
       

    33. [33]

      Huang, G. X.; Guo, H. Y.; Zhao, J.; Liu, Y. H.; Xing, B. S. Water Res. 2012, 102, 313.

    34. [34]

      Anirudhan, T. S.; Ramachandran, M. Proc. Saf. Environ. Prot. 2015, 95, 215.  doi: 10.1016/j.psep.2015.03.003

    35. [35]

      Chowdhury, I.; Duch, M. C.; Mansukhani, N. D.; Hersam, M. C.; Bouchard, D. Environ. Sci. Technol. 2013, 47, 6288.  doi: 10.1021/es400483k

    36. [36]

      Wu, L.; Liu, L.; Gao, B.; Muñoz-Carpena, R.; Zhang, M.; Chen, H.; Zhou, Z. H.; Wang, H. Langmuir 2013, 29, 15174.  doi: 10.1021/la404134x

    37. [37]

      Ma, J. C.; Dougherty, D. A. Chem. Rev. 1997, 97, 1303.  doi: 10.1021/cr9603744

    38. [38]

      Trivedi, P.; Axe, L.; Dyer, J. Colloids Surf. A 2001, 191, 107.  doi: 10.1016/S0927-7757(01)00768-3

    39. [39]

      Raza, G.; Amjad, M.; Kaur, I.; Wen, D. Environ. Sci. Technol. 2016, 50, 8462.  doi: 10.1021/acs.est.5b05746

    40. [40]

      Volkov, A. G.; Paula, D. W.; Dreamer, D. W. Bioelectrochem. Bioenerg. 1997, 42, 153.  doi: 10.1016/S0302-4598(96)05097-0

    41. [41]

      Tansel, B.; Sager, J.; Rector, T.; Garland, J.; Strayer, R. F.; Levine, L. F.; Roberts, M.; Hummerick, M.; Bauer, J. Sep. Purif. Technol. 2006, 51, 40.  doi: 10.1016/j.seppur.2005.12.020

    42. [42]

      Abdelmeguid, A. E.; Aboelfetoh, E. F.; Ebeid, E. M. Chemosphere 2017, 181, 738.  doi: 10.1016/j.chemosphere.2017.04.137

    43. [43]

      Tahir, S. S.; Rauf, N. Chemosphere 2006, 63, 1842.  doi: 10.1016/j.chemosphere.2005.10.033

    44. [44]

      Hummers, W. S.; Offeman, R. E. J. Am. Chem. Soc. 1958, 80, 1339.  doi: 10.1021/ja01539a017

  • 加载中
    1. [1]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    2. [2]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    3. [3]

      Zilin HuYaoshen NiuXiaohui RongYongsheng Hu . Suppression of Voltage Decay through Ni3+ Barrier in Anionic-Redox Active Cathode for Na-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306005-0. doi: 10.3866/PKU.WHXB202306005

    4. [4]

      Wenjuan TanYong YeXiujuan SunBei LiuJiajia ZhouHailong LiaoXiulin WuRui DingEnhui LiuPing Gao . Building P-Poor Ni2P and P-Rich CoP3 Heterojunction Structure with Cation Vacancy for Enhanced Electrocatalytic Hydrazine and Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(6): 2306054-0. doi: 10.3866/PKU.WHXB202306054

    5. [5]

      Ye WangRuixiang GeXiang LiuJing LiHaohong Duan . An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol. Acta Physico-Chimica Sinica, 2024, 40(7): 2307019-0. doi: 10.3866/PKU.WHXB202307019

    6. [6]

      Yuyao WangZhitao CaoZeyu DuXinxin CaoShuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2406014-0. doi: 10.3866/PKU.WHXB202406014

    7. [7]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    8. [8]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    9. [9]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    10. [10]

      Qiaojia GUOJunkai CAIChunying DUAN . Effects of anions on the structural regulation of Zn-salen-modified metal-organic cage. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2203-2211. doi: 10.11862/CJIC.20240209

    11. [11]

      Chaolin MiYuying QinXinli HuangYijie LuoZhiwei ZhangChengxiang WangYuanchang ShiLongwei YinRutao Wang . Galvanic Replacement Synthesis of Graphene Coupled Amorphous Antimony Nanoparticles for High-Performance Sodium-Ion Capacitor. Acta Physico-Chimica Sinica, 2024, 40(5): 2306011-0. doi: 10.3866/PKU.WHXB202306011

    12. [12]

      Yue ZhangBao LiLixin Wu . GO-Assisted Supramolecular Framework Membrane for High-Performance Separation of Nanosized Oil-in-Water Emulsions. Acta Physico-Chimica Sinica, 2024, 40(5): 2305038-0. doi: 10.3866/PKU.WHXB202305038

    13. [13]

      Yanxi LIUMengjia XUHaonan CHENQuan LIUYuming ZHANG . A fluorescent-colorimetric probe for peroxynitrite-anion-imaging in living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1112-1122. doi: 10.11862/CJIC.20240423

    14. [14]

      Jiandong LiuXin LiDaxiong WuHuaping WangJunda HuangJianmin Ma . Anion-Acceptor Electrolyte Additive Strategy for Optimizing Electrolyte Solvation Characteristics and Electrode Electrolyte Interphases for Li||NCM811 Battery. Acta Physico-Chimica Sinica, 2024, 40(6): 2306039-0. doi: 10.3866/PKU.WHXB202306039

    15. [15]

      Xintong ZhuBin CaoChong YanCheng TangAibing ChenQiang Zhang . Advances in coating strategies for graphite anodes in lithium-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100096-0. doi: 10.1016/j.actphy.2025.100096

    16. [16]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    17. [17]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    18. [18]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    19. [19]

      Guoze YanBin ZuoShaoqing LiuTao WangRuoyu WangJinyang BaoZhongzhou ZhaoFeifei ChuZhengtong LiYamauchi YusukeMelhi SaadXingtao Xu . Opportunities and Challenges of Capacitive Deionization for Uranium Extraction from Seawater. Acta Physico-Chimica Sinica, 2025, 41(4): 2404006-0. doi: 10.3866/PKU.WHXB202404006

    20. [20]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

Metrics
  • PDF Downloads(49)
  • Abstract views(2040)
  • HTML views(362)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return