Citation: Zeng Jinyue, Wang Xiaoshuang, Zhang Xianzheng, Zhuo Renxi. Research Progress in Functional Metal-Organic Frameworks for Tumor Therapy[J]. Acta Chimica Sinica, ;2019, 77(11): 1156-1163. doi: 10.6023/A19070259 shu

Research Progress in Functional Metal-Organic Frameworks for Tumor Therapy

  • Corresponding author: Zhang Xianzheng, xz-zhang@whu.edu.cn
  • These authors contributed equally to this work
  • Received Date: 11 July 2019
    Available Online: 9 November 2019

    Fund Project: the National Natural Science Foundation of China 51833007Project supported by the China Postdoctoral Science Foundation (Nos. 2019TQ234, 2019M652693) and the National Natural Science Foundation of China (Nos. 51833007, 51690152)the National Natural Science Foundation of China 51690152the China Postdoctoral Science Foundation 2019TQ234the China Postdoctoral Science Foundation 2019M652693

Figures(7)

  • Malignant tumor is considered to be one of the most threatening diseases to human health because it is easy to metastasis and relapse, hard to cure with high mortality. Construction of anti-tumor drug delivery systems would effectively improve the therapeutic efficiency of traditional tumor therapy agents. However, the complicated tumor micro-environment as well as the individual diversity of tumor would lead to low efficiency or treatment failure. The conventional tumor treatments, such as chemotherapy, radiotherapy and surgery, have been unable to satisfy the demand for tumor therapy owing to the severe side effect and low therapeutic efficiency. In recent years, researchers have designed a lot of multifunctional nano-drug carriers for efficient tumor therapy with reduced side effects. Metal-organic frameworks (MOFs), a class of ordered porous crystal materials, have received significant research attention for their applications in gas adsorption and separation, catalysis, drug delivery, immobilized bio-macromolecules and tumor therapy. Due to tunable inorganic building blocks and organic linkers, MOFs can not only integrate drugs or photosensitizers into periodic arrays, but also possess large pore sizes and high surface areas for drug encapsulation. Currently, the biomedical research of MOFs mainly includes the preparation of multifunctional biocompatible nanomaterials through controllable synthesis and reasonable surface modification. MOFs based nanomaterials with desired physiological functions have been widely used for targeting tumor imaging and therapy by utilizing their unique physical and chemical properties. The recent progress on the bio-functionalization of MOFs, including new design strategies and application in tumor therapy is summarized. Particularly, the construction of MOF-based nanoplatforms for tumor therapy on the basis of biomedical polymer modified MOFs is also described in detail. The development trends of MOFs for biomedical application are also prospected. We believe that this work will offer a preliminary understanding to design MOF-based drug delivery systems and acquire the therapeutic strategies of MOF-based nano-medicine for future clinical biomedical applications.
  • 加载中
    1. [1]

      Hanahan, D.; Weinberg, R. A. Cell 2011, 144, 646.  doi: 10.1016/j.cell.2011.02.013

    2. [2]

      Emmenegger, U.; Kerbel, R. S. Nature 2010, 468, 637.  doi: 10.1038/468637a

    3. [3]

      Stark, G. R. Nature 1986, 324, 407.  doi: 10.1038/324407a0

    4. [4]

      (a) Meyer, R. A.; Sunshine, J. C.; Green, J. J. Trends Biotechnol. 2015, 33, 514. (b) Alvarez-Lorenzo, C.; Concheiro, A. Curr. Opin. Biotechnol. 2013, 24, 1167. (c) Carmona-Ribeiro, A. M. J. Liposome Res. 2007, 17, 165. (d) Qian, H.; Liu, B.; Jiang, X. Mater. Today Chem. 2018, 7, 53.

    5. [5]

      (a) Shi, J.; Votruba, A. R.; Farokhzad, O. C.; Langer, R. Nano Lett. 2010, 10, 3223. (b) Shi, J.; Philip, W. K.; Richard, W.; Omid, C. F. Nat. Rev. Cancer 2017, 1, 20.

    6. [6]

    7. [7]

    8. [8]

    9. [9]

      (a) Kitaura, R.; Akiyama, G.; Seki, K.; Kitagawa. S. Angew. Chem., Int. Ed. 2003, 42, 428. (b) Mulfort, K. L.; Hupp, J. T. J. Am. Chem. Soc. 2007, 129, 9604. (c) Eddaoudi, M.; Kim, J.; Rosi, N.; Vodak, D.; Wachter, J.; O'Keeffe, M.; Yaghi. O. M. Science 2002, 295, 469. (d) Rieter, W. J.; Pott, K. M.; Taylor, K. M. L.; Lin, W. B. J. Am. Chem. Soc. 2008, 130, 11584. (e) Horcajada, P.; Chalati, T.; Serre, C.; Gillet, B.; Sebrie, C.; Baati, T.; Eubank, J. F.; Heurtaux, D.; Clayette, P.; Kreuz, C.; Chang, J. S.; Hwang, Y. K.; Marsaud, V.; Bories, P. N.; Cynober, L.; Gil, S.; Ferey, G.; Couvreur, P.; Gref, R. Nat. Mater. 2010, 9, 172.

    10. [10]

      (a) Tranchemontagne, D. J.; Mendoza-Cortes, J. L.; O'Keeffe, M.; Yaghi, O. M. Chem. Soc. Rev. 2009, 38, 1257. (b) Shekhah, O.; Wang, H.; Paradinas, M.; Ocal, C.; Schupbach, B.; Terfort, A.; Zacher, D.; Fischer, R. A.; Woll, C. Nat. Mater. 2009, 8, 481. (c) Zeng, J. Y.; Zhang, M. K.; Peng, M. Y.; Gong, D.; Zhang, X. Z. Adv. Funct. Mater. 2018, 28, 1705451. (d) Shieh, F. K.; Wang, S. C.; Yen, C. I.; Wu, C. C.; Dutta, S.; Chou, L. Y.; Morabito, J. V.; Hu, P.; Hsu, M. H.; Wu, K. C. W.; Tsung, C. K. J. Am. Chem. Soc. 2015, 137, 4276.

    11. [11]

    12. [12]

      (a) Burtch, N. C.; Jasuja, H.; Walton, K. S. Chem. Rev. 2014, 114, 10575. (b) Zeng, J. Y.; Wang, X. S.; Zhang, M. K.; Li, Z. H.; Gong, D.; Pan, P.; Huang, L.; Cheng, S. X.; Cheng, H.; Zhang, X. Z. ACS Appl. Mater. Interfaces 2017, 9, 43143.

    13. [13]

      (a) Zeng, J. Y.; Wang, X. S.; Qi, Y. D.; Yu, Y.; Zeng, X.; Zhang, X. Z. Angew. Chem., Int. Ed. 2019, 131, 5748. (b) Farha, O. K.; Hupp, J. T. Acc. Chem. Res. 2010, 43, 1166.

    14. [14]

      Rocca, J. D.; Liu, D. M.; Lin, W. B. Acc. Chem. Res. 2011, 44, 957.  doi: 10.1021/ar200028a

    15. [15]

      Zhou, H. C.; Long, J. R.; Yaghi, O. M. Chem. Rev. 2012, 112, 673.  doi: 10.1021/cr300014x

    16. [16]

      Zeng, J. Y. Ph.D. Dissertation, Wuhan University, Wuhan, 2018.

    17. [17]

      (a) Taylor-Pashow, K. M. L.; Della Rocca, J.; Xie, Z.; Tran. S.; Lin, W. B. J. Am. Chem. Soc. 2009, 131, 14261. (b) Bellido, E.; Hidalgo, T.; Lozano, M. V.; Guillevic, M.; Simon-Vazquez, R.; Santander-Ortega, M. J.; Gonzalez-Fernandez, A.; Serre, C.; Alonso, M. J.; Horcajada, P. Adv. Healthcare Mater. 2015, 4, 1246.

    18. [18]

      (a) Furukawa, S.; Reboul, J.; Diring, S.; Sumida, K.; Kitagawa, S. Chem. Soc. Rev. 2014, 43, 5700. (b) Horcajada, P.; Gref, R.; Baati, T.; Allan, P. K.; Maurin, G.; Couvreur, P.; Férey, G.; Morris, R. E.; Serre, C. Chem. Rev. 2012, 112, 1232. (c) Morris, W.; Doonan, C. J.; Furukawa, H.; Banerjee, R.; Yaghi, O. M. J. Am. Chem. Soc. 2008, 130, 12626.

    19. [19]

      Chen, Z. X.; Liu, M. D.; Zhang, M. K.; Wang, S. B.; Xu, Lu.; Li, C. X.; Gao, F.; Xie, B. R.; Zhong, Z. L.; Zhang, X. Z. Adv. Funct. Mater. 2018, 28, 1803498.  doi: 10.1002/adfm.201803498

    20. [20]

      (a) Wang, X. S.; Zeng, J. Y.; Zhang, M. K.; Zeng, X.; Zhang, X. Z. Adv. Funct. Mater. 2018, 28, 1801783. (b) He, Y.; Xu, J.; Sun, X.; Ren, X.; Maharjan, A.; York, P.; Su, Y.; Li, H.; Zhang, J. Theranostics 2019, 9, 2489.

    21. [21]

      Chen, W. H.; Liao, W. C.; Sohn, Y. S.; Fadeev, M.; Cecconello, A.; Nechushtai, R.; Willner, I. Adv. Funct. Mater. 2018, 28, 1705137.  doi: 10.1002/adfm.201705137

    22. [22]

      Zeng, J. Y.; Zou, M. Z.; Zhang, M. K.; Wang, X. S.; Zeng, X.; Cong, H. J.; Zhang, X. Z. ACS Nano 2018, 12, 4630.  doi: 10.1021/acsnano.8b01186

    23. [23]

      (a) Liang, W. B.; Xu, H. S.; Carraro, S.; Maddigan, N. K.; Li, Q. W.; Bell, S. G.; Huang, D. M.; Tarzia, A.; Solomon, M. B.; Amenitsch, H.; Vaccari, L.; Sumby, C. J.; Falcaro, P.; Doonan, C. J. J. Am. Chem. Soc. 2019, 141, 2348. (b) Zhang, J. P.; Zhu, A. X.; Lin, R. B.; Qi, X. L.; Chen, X. M. Adv. Mater. 2011, 23, 1268.

    24. [24]

      (a) Chen, W. H.; Vazquez-González, M.; Zoabi, A.; Abu-Reziq, R.; Willner, I. Nat. Catal. 2018, 1, 689. (b) Liang, K.; Ricco, R.; Doherty, C. M.; Styles, M. J.; Bell, S.; Kirby, N.; Mudie, S.; Haylock, D.; Hill, A. J.; Doonan, C. J.; Falcaro, P. Nat. Commun. 2015, 6, 7240.

    25. [25]

      Peng, S.; Bie, D. L.; Sun, Y. Z. S.; Liu, M.; Cong, H. J.; Zhou, W. T.; Xia, Y. C.; Tang, H.; Deng, H. X.; Zhou, X. Nat. Commun. 2018, 9, 1293.  doi: 10.1038/s41467-018-03650-w

    26. [26]

      Wan, S. S.; Zeng, J. Y.; Cheng, H.; Zhang, X. Z. Biomaterials 2018, 185, 51.  doi: 10.1016/j.biomaterials.2018.09.004

    27. [27]

      Anderson, S. L.; Boyd, P. G.; Gładysiak, A.; Nguyen, T. N.; Palgrave, R. G.; Kubicki, D.; Emsley, L.; Bradshaw, D.; Rosseinsky, M. J.; Smit, B.; Stylianou, K. C. Nat. Commun. 2019, 10, 1612.  doi: 10.1038/s41467-019-09486-2

    28. [28]

      Du, Y. J.; Gao, J.; Zhou, L. Y.; Ma, L.; He, Y.; Zheng, X. F.; Huang, Z. H.; Jiang, Y. J. Adv. Sci. 2019, 6, 1801684.  doi: 10.1002/advs.201801684

    29. [29]

      Wan, S. S.; Zhang, L.; Zhang, X. Z. ACS Cent. Sci. 2019, 5, 327.  doi: 10.1021/acscentsci.8b00822

    30. [30]

      Yang, Y.; Zhu, W.; Dong, Z.; Chao, Z.; Xu, L.; Chen, M.; Liu, Z. Adv. Mater. 2017, 29, 1703588.  doi: 10.1002/adma.201703588

    31. [31]

      (a) Zhu, J. Y.; Zheng, D. W.; Zhang, M. K.; Yu, W. Y.; Qiu, W, X.; Hu, J. J.; Feng, J.; Zhang, X. Z. Nano Lett. 2016, 16, 5895. (b) Zou, M. Z.; Liu, W. L.; Li, C. X.; Zheng, D. W.; Zeng, J. Y.; Gao, F.; Ye, J. J.; Zhang, X. Z. Small 2018, 14, 1801120. (c) Li, S. Y.; Xie, B. R.; Cheng, H.; Li, C. X.; Zhang, M. K.; Qiu, W. X.; Liu, W. L.; Wang, X. S.; Zhang, X. Z. Biomaterials 2018, 151, 1.

    32. [32]

      (a) Cheng, H.; Zhu, J. Y.; Li, S. Y.; Zeng, J. Y.; Lei, Q.; Chen, K. W.; Zhang, C.; Zhang, X. Z. Adv. Funct. Mater. 2016, 26, 7847. (b) Li, S. Y.; Cheng, H.; Qiu, W. X.; Zhang, L.; Wan, S. S.; Zeng, J. Y.; Zhang, X. Z. Biomaterials 2017, 142, 149.

    33. [33]

      Liu, W. L.; Zou, M. Z.; Liu, T.; Zeng, J. Y.; Li, X.; Yu, W. Y.; Li, C. X.; Song, W.; Feng, J.; Zhang, X. Z. Adv. Mater. 2019, 31, 1900499.  doi: 10.1002/adma.201900499

    34. [34]

      Zhang, C.; Zhang, L.; Wu, W.; Gao, F.; Li, R. Q.; Song, W.; Zhuang, Z. N.; Liu, C. J.; Zhang, X. Z. Adv. Mater. 2019, 31, 1901179.  doi: 10.1002/adma.201901179

    35. [35]

      Li, S. Y.; Cheng, H.; Xie, B. R.; Qiu, W. X.; Zeng, J. Y.; Li, C. X.; Zhang, L.; Liu, W. L.; Zhang, X. Z. ACS Nano 2017, 11, 7006.  doi: 10.1021/acsnano.7b02533

  • 加载中
    1. [1]

      Jian LiYu ZhangRongrong YanKaiyuan SunXiaoqing LiuZishang LiangYinan JiaoHui BuXin ChenJinjin ZhaoJianlin Shi . Highly Efficient, Targeted, and Traceable Perovskite Nanocrystals for Photoelectrocatalytic Oncotherapy. Acta Physico-Chimica Sinica, 2025, 41(5): 100042-0. doi: 10.1016/j.actphy.2024.100042

    2. [2]

      Shiyang HeDandan ChuZhixin PangYuhang DuJiayi WangYuhong ChenYumeng SuJianhua QinXiangrong PanZhan ZhouJingguo LiLufang MaChaoliang Tan . Pt Single-Atom-Functionalized 2D Al-TCPP MOF Nanosheets for Enhanced Photodynamic Antimicrobial Therapy. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-0. doi: 10.1016/j.actphy.2025.100046

    3. [3]

      Tingting XUWenjing ZHANGYongbo SONG . Research advances of atomic precision coinage metal nanoclusters in tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2275-2285. doi: 10.11862/CJIC.20240229

    4. [4]

      Jiahao Zeng Hui Chao . 诱导程序性细胞死亡的金属抗肿瘤药物研究. University Chemistry, 2025, 40(6): 145-159. doi: 10.12461/PKU.DXHX202406019

    5. [5]

      Jiahui CHENTingting ZHENGXiuyun ZHANGWei LÜ . Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106

    6. [6]

      Xiaoxuan Yu Wukun Liu . Practice of Ideological and Political Education in Medicinal Chemistry for Pharmacy Administration Major: A Case Study on the Discovery of Cisplatin’s Anticancer Function. University Chemistry, 2025, 40(4): 408-414. doi: 10.12461/PKU.DXHX202405200

    7. [7]

      Xue WuYupeng LiuBingzhe WangLingyun LiZhenjian LiQingcheng WangQuansheng ChengGuichuan XingSongnan Qu . Rationally assembling different surface functionalized carbon dots for enhanced near-infrared tumor photothermal therapy. Acta Physico-Chimica Sinica, 2025, 41(9): 100109-0. doi: 10.1016/j.actphy.2025.100109

    8. [8]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    9. [9]

      Wenjie SHIFan LUMengwei CHENJin WANGYingfeng HAN . Synthesis and host-guest properties of imidazolium-functionalized zirconium metal-organic cage. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 105-113. doi: 10.11862/CJIC.20240360

    10. [10]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    11. [11]

      Xiuya Ma Yu Chen Yan Zhang . Stories about Pharmaceuticals. University Chemistry, 2025, 40(7): 232-240. doi: 10.12461/PKU.DXHX202408003

    12. [12]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    13. [13]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    14. [14]

      Zhibei Qu Changxin Wang Lei Li Jiaze Li Jun Zhang . Organoid-on-a-Chip for Drug Screening and the Inherent Biochemistry Principles. University Chemistry, 2024, 39(7): 278-286. doi: 10.3866/PKU.DXHX202311039

    15. [15]

      Ziheng Zhuang Xiao Xu Kin Shing Chan . Superdrugs for Superbugs. University Chemistry, 2024, 39(9): 128-133. doi: 10.3866/PKU.DXHX202309040

    16. [16]

      Xiaofang DONGYue YANGShen WANGXiaofang HAOYuxia WANGPeng CHENG . Research progress of conductive metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 14-34. doi: 10.11862/CJIC.20240388

    17. [17]

      Lina Feng Guoyu Jiang Xiaoxia Jian Jianguo Wang . Application of Organic Radical Materials in Biomedicine. University Chemistry, 2025, 40(4): 253-260. doi: 10.12461/PKU.DXHX202405171

    18. [18]

      Yang MeiqingLu WangHaozi LuYaocheng YangSong Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 2310046-0. doi: 10.3866/PKU.WHXB202310046

    19. [19]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    20. [20]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

Metrics
  • PDF Downloads(65)
  • Abstract views(2706)
  • HTML views(708)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return