Citation: Shao Wenbo, An Quanlin, Cao Xin, Yu Biao. Efficient Synthesis of Representative Flavone-7-O-Glycosides[J]. Acta Chimica Sinica, ;2019, 77(10): 999-1007. doi: 10.6023/A19060233 shu

Efficient Synthesis of Representative Flavone-7-O-Glycosides

  • Corresponding author: Cao Xin, caox@fudan.edu.cn Yu Biao, byu@sioc.ac.cn
  • Received Date: 25 June 2019
    Available Online: 17 October 2019

    Fund Project: the Funds from the National Natural Science Foundation of China 21621002Project supported by the Funds from the National Natural Science Foundation of China (Nos. 21432012, 21621002), the Chinese Academy of Sciences (Strategic Priority Research Program, No. XDB20020200), the Youth Innovation Promotion Association (No. 2017300) and the K.C. Wong Education Foundationthe Chinese Academy of Sciences (Strategic Priority Research Program) XDB20020200the Funds from the National Natural Science Foundation of China 21432012the Youth Innovation Promotion Association 2017300

Figures(3)

  • Apigenin-7-O-β-D-glucuronide (1) and scutellarin (scutellarein-7-O-β-D-glucuronide, 2) are two major flavone glucuronide components occurring in breviscapines, which are prepared from the traditional Chinese herb Erigeron breviscapus. These two flavone glycosides show potent anti-oxidative, anti-inflammatory and neuroprotective activities in various evaluations. Synthesis of these natural glycosides in an efficiently manner would facilitate studies on their structure activity relationships. As a persistent effort on the chemical syntheses of the diverse glycoconjugates from traditional Chinese herbs in our group, we report herein the synthesis of these two representative flavone O-glucuronides. It is known that the solubility of flavone compounds is rather low and this property would greatly hinder their glycosylation reactions. In order to increase the solubility of the flavone derivatives in the glycosylation solvents, hexanoyl and benzyl groups were selected as the permanent protecting groups for the hydroxyl groups of apigenin (7) and scutellarein (8). The construction of the phenolic O-glucuronide is known to be a difficult task, especially the glycosylation of the poorly nucleophilic 7-hydroxyl group which locates at the para-position of the flavone carbonyl group. We achieved the glycosylation of the flavone 7-OH with 2, 3, 4-tri-O-benzoyl-6-O-TBDPS-glucopyranosyl ortho-alkynylbenzoate (9) under the catalysis of Ph3PAuNTf2 (0.2 equiv., 4 Å MS, CH2Cl2, r.t., 5 h) in excellent yields. After that, the 6-O-TBDPS groups were removed, and the requisite glucuronides were then elaborated by oxidation of the resulting 6-OH under the conditions of DAIB/TEMPO (CH2Cl2/H2O, V:V=2:1, r.t.) in good yields. After global deprotection, the desired products apigenin-7-O-β-D-glucuronide (1) and scutellarin (2) were obtained in overall yields of 36% (5 steps) and 7% (9 steps), respectively, from the starting flavone aglycones. Following the same strategy, four naturally occurring flavone-7-O-glycosides, namely apigetrin (3), plantaginin (4), apigenin 7-O-β-D-xylopyranoside (5) and apigenin 7-O-α-L-rhamnopyranoside (6), were smoothly synthesized in 4~7 steps with the overall yields of 61%, 13%, 58% and 61%, respectively.
  • 加载中
    1. [1]

      (a) Cui, J. M.; Wu, S. Nat. Prod. Res. Dev. 2003, 15, 255. (b) Ma, Y. H.; Luo, G. A.; Wang, Y. M. Chin. Tradit. Pat. Med. 2004, 1, 63. (c) Wang, J.; Zhang, L.; Liu, B.; Wang, Q.; Chen, Y.; Wang, Z.; Zhou, J.; Xiao, W.; Zheng, C.; Wang, Y. J. Ethnopharmacol. 2018, 224, 429.

    2. [2]

      (a) Yue, J. M.; Lin, Z. W.; Wang, D. Z. Phytochemistry 1994, 36, 717. (b) Xia, H. J.; Qiu, F.; Zhu, S.; Zhang, T. Y.; Qu, G. X.; Yao, X. S. Biol. Pharm. Bull. 2007, 30, 1308.

    3. [3]

      (a) Liu, Q.; Li, X.; Ouyang, X.; Chen, D. Molecules 2018, 23, 3225. (b) Sang, Z.; Li, Y.; Qiang, X.; Xiao, G.; Liu, Q.; Tan, Z.; Deng, Y. Bioorg. Med. Chem. 2015, 23, 668.

    4. [4]

      (a) Wu, W. H.; Chen, T. Y.; Lu, R. W.; Chen, S. T.; Chang, C. C. Phytochemistry 2012, 83, 110. (b) Chen, V.; Staub, R. E.; Baggett, S.; Chimmani, R.; Tagliaferri, M.; Cohen, I.; Shtivelman, E. PLoS One 2012, 7, e30107.

    5. [5]

      (a) Huang, X. W.; Xu, Y.; Sui, X.; Lin, H.; Xu, J. M.; Han, D.; Ye, D. D.; Lv, G. F.; Liu, Y. X.; Qu, X. B.; Duan, M. H. Oncol. Lett. 2019, 17, 5581. (b) Li, H. M.; Gu, T.; Wu, W. Y.; Yu, S. P.; Fan, T. Y.; Zhong, Y.; Li, N. G. Med. Chem. 2018, 14, 1.

    6. [6]

      (a) Sherbeiny, E.; Ansari, E. Planta Med. 1976, 29, 129. (b) Homberg, H.; Geiger, H. Phytochemistry 1980, 19, 2443. (c) Smirnova, L. P.; GlyzinA, V. I.; Patudin, A. V.; Bankovskii, A. I. Chem. Nat. Compd. 1974, 10, 687. (d) Shabrawy, M. O. A.; Hosni, H. A.; Garf, I. A.; Marzouk, M. M.; Kawashty, S. A.; Saleh, N. A. M. Biochem. Syst. Ecol. 2014, 56, 125.

    7. [7]

      (a) Jacobsson, M.; Malmberg, J.; Ellervik, U. Carbohydr. Res. 2006, 341, 1266. (b) Sun, J. S.; Laval, S.; Yu, B. Synthesis 2014, 46, 1030. (c) Li, Y.; Yang, W. Z.; Ma, Y.; Sun, J. S.; Shan, L.; Zhang, W. D.; Yu, B. Synlett 2011, 915. (d) Yang, W. Z.; Sun, J. S.; Yang, Z.; Han, W.; Zhang, W. D.; Yu, B. Tetrahedron Lett. 2012, 53, 2773. (e) Hu, Y.; Tu, Y. H.; Liu, D. Y.; Liao, J. X.; Sun, J. S. Org. Biomol. Chem. 2016, 14, 4842. (f) Liao, J. X.; Fan, N. L.; Liu, H.; Tu, Y. H.; Sun, J. S. Org. Biomol. Chem. 2016, 14, 1221. (g) Wang, Y.; Liu, M.; Liu, L.; Xia, J. H.; Du, Y. G.; Sun, J. S. J. Org. Chem. 2018, 83, 4111.

    8. [8]

      (a) Farkas, L.; Mezey-Vandor, G.; Nogradi, M. Chem. Ber. 1971, 104, 2681. (b) Farkas, L.; Mezey-Vandor, G.; Nogradi, M. Chem. Ber. 1974, 107, 3874. (c) Synthesis for 1: Li, P. H.; Zhang, Z. P.; Zhang, W.; Yang, Z. X. CN 104761599, 2015. (d) Synthesis of 2: (i) Nagashima, S.; Hirotani, M.; Yoshikawa, T. Phytochemistry 2000, 53, 533; (ii) Li, P. H.; Zhang, W.; Yang, Z. X.; Zhang, X. B.; Wang, J.; Zhu, H. B.; Chen, J. X.; Bai, Y. Y. EP 2840088, 2015. (e) Synthesis of 3: (i) Nakaoki, N. Yakugaku Zasshi 1940, 60, 502. (ii) Oyama, K. I.; Kondo, T. Tetrahedron 2004, 60, 2025; (iii) Liu, J. D.; Chen, L.; Cai, S. L.; Wang, Q. Carbohydr. Res. 2012, 357, 41; (iv) Zheng, Z. W.; Han, Z. Y.; Cai, L.; Zhou, D. D.; Chavis, B. R.; Li, C. S.; Sui, Q.; Jiang, K. Y.; Gao, Q. Tetrahedron Lett. 2018, 59, 4442. (f) Synthesis of 4: Li, N. G.; Shen, M. Z.; Wang, Z. J.; Tang, Y. P.; Shi, Z. H.; Fu, Y. F.; Shi, Q. P.; Tang, H.; Duan, J. A. Bioorg. Med. Chem. Lett. 2013, 23, 102.

    9. [9]

      (a) Li, Y.; Yang, Y.; Yu, B. Tetrahedron Lett. 2008, 49, 3604. (b) Li, Y.; Yang, X.; Liu, Y.; Zhu, C.; Yang, Y.; Yu, B. Chem.-Eur. J. 2010, 16, 1871. (c) Zhu, Y.; Yu, B. Angew. Chem., Int. Ed. 2011, 50, 8329; (d) Tang, Y.; Li, J.; Zhu, Y.; Li, Y.; Yu, B. J. Am. Chem. Soc. 2013, 135, 18396. (e) Li, W.; Yu, B. Chem. Soc. Rev. 2018, 47, 7954. (f) Yu, B. Acc. Chem. Res. 2018, 51, 507.

    10. [10]

      (a) Zhu, D.; Yu, B. Chin. J. Chem. 2018, 36, 681. (b) Li, J.; Yu, B. Angew. Chem., Int. Ed. 2015, 54, 6618. (c) Bai, Y.; Shen, X.; Li, Y.; Dai, M. J. Am. Chem. Soc. 2016, 138, 10838. (d) Wang, B.; Liu, Y.; Jiao, R.; Feng, Y.; Li, Q.; Chen, C.; Liu, L.; He, G.; Chen, G. J. Am. Chem. Soc. 2016, 138, 3926. (e) Nicolaou, K. C.; Cai, Q.; Sun, H.; Qin, B.; Zhu, S. J. Am. Chem. Soc. 2016, 138, 3118. (f) Nie, S. Y.; Li, W.; Yu, B. J. Am. Chem. Soc. 2014, 136, 4157. (g) Zhang, X.; Zhou, Y.; Zuo, J.; Yu, B. Nat. Commun. 2015, 6, 5879. (h) Shen, R. Z.; Cao, X.; Yu. B. Acta Chim. Sinica 2018, 76, 278. (沈仁增, 曹鑫, 俞飚, 化学学报, 2018, 76, 278.)

    11. [11]

      (a) Yang, W. Z.; Sun, J. S.; Lu, W. X.; Li, Y.; Shan, L.; Han, W.; Zhang, W. D.; Yu, B. J. Org. Chem. 2010, 75, 6879. (b) Yang, W. Z.; Li R. Y.; Han, W.; Zhang, W. D.; Sun, J. S. Chin. J. Org. Chem. 2012, 32, 1067. (杨为准, 李荣耀, 韩伟, 张卫东, 孙建松, 有机化学, 2012, 32, 1067.)

    12. [12]

      Liu, X.; Wen, G. E.; Liu, J. C.; Liao, J. X.; Sun, J. S. Carbohydr. Res. 2019, 475, 69.  doi: 10.1016/j.carres.2019.02.005

    13. [13]

      Karst, N.; Jean-Claude, J. J. Chem. Soc., Perkin Trans. 1 2000, 16, 2709.

    14. [14]

      Yu, J.; Sun, J. S.; Niu, Y. M.; Li, R. Y.; Liao, J. X.; Zhang, F. Y.; Yu, B. Chem. Sci. 2013, 4, 3899.  doi: 10.1039/c3sc51479j

    15. [15]

      (a) Zulueta, M. M. L.; Lin, S. Y.; Lin, Y. T.; Huang, C. J.; Wang, C. C.; Ku, C. C.; Shi, Z.; Chyan, C. L.; Irene, D.; Lim, L. H.; Tsai, T. I.; Hu, Y. P.; Arco, S. D.; Wong, C. H.; Hung, S. C. J. Am. Chem. Soc. 2012, 134, 8988. (b) Chang, C. H.; Lico, L. S.; Huang, T. Y.; Lin, S. Y.; Chang, C. L.; Arco, S. D.; Hung, S. C. Angew. Chem., Int. Ed. 2014, 53, 9876.

    16. [16]

      Li, M.; Han, X. W.; Yu, B. J. Org. Chem. 2003, 68, 6842.  doi: 10.1021/jo034553e

    17. [17]

      Gao, Q.; Lian, G. Y.; Lin, F. Carbohydr. Res. 2008, 344, 511.

  • 加载中
    1. [1]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    2. [2]

      Xinyi ZhangKai RenYanning LiuZhenyi GuZhixiong HuangShuohang ZhengXiaotong WangJinzhi GuoIgor V. ZatovskyJunming CaoXinglong Wu . Progress on Entropy Production Engineering for Electrochemical Catalysis. Acta Physico-Chimica Sinica, 2024, 40(7): 2307057-0. doi: 10.3866/PKU.WHXB202307057

    3. [3]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    4. [4]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    5. [5]

      Bin SUNHeyan JIANG . Glucose-modified bis-Schiff bases: Synthesis and bio-activities in Alzheimer′s disease therapy. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1338-1350. doi: 10.11862/CJIC.20240428

    6. [6]

      Lifang HEWenjie TANGYaoze LUOMingsheng LIANGJianxin TANGYuxuan WUFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two dialkyltin complexes constructed based on 2, 2′-bipyridin-6, 6′-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1601-1609. doi: 10.11862/CJIC.20250012

    7. [7]

      Lei FengZe-Min ZhuYing YangZongbin HeJiafeng ZouMan-Bo LiYan ZhaoZhikun Wu . Long-Pursued Structure of Au23(S-Adm)16 and the Unexpected Doping Effects. Acta Physico-Chimica Sinica, 2024, 40(5): 2305029-0. doi: 10.3866/PKU.WHXB202305029

    8. [8]

      Chunling QinShuang ChenHassanien GomaaMohamed A. ShenashenSherif A. El-SaftyQian LiuCuihua AnXijun LiuQibo DengNing Hu . Regulating HER and OER Performances of 2D Materials by the External Physical Fields. Acta Physico-Chimica Sinica, 2024, 40(9): 2307059-0. doi: 10.3866/PKU.WHXB202307059

    9. [9]

      Liping GUO . Synthesis and crystal structure characterization of yttrium imido complex: The reactivity of 2-substituted-1-amino-o-carborane with yttrium dialkyl complex. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1409-1415. doi: 10.11862/CJIC.20250065

    10. [10]

      Xiaofang LiZhigang Wang . 调节金助催化剂的dz2占据轨道增强光催化合成H2O2. Acta Physico-Chimica Sinica, 2025, 41(7): 100080-0. doi: 10.1016/j.actphy.2025.100080

    11. [11]

      Chao LiuHuan YuJiaming LiXi YuZhuangzhi YuYuxi SongFeng ZhangQinfang ZhangZhigang Zou . 具有光热效应的多级Ti3C2/Bi12O17Br2肖特基异质结简单合成及其太阳能驱动抗生素光降解的研究. Acta Physico-Chimica Sinica, 2025, 41(7): 100075-0. doi: 10.1016/j.actphy.2025.100075

    12. [12]

      Zhenhua Wang Haoyang Feng Xiaoyang Shao Wenru Fan . Vitamins in Solid Propellants: Controlled Synthesis of Neutral Macromolecular Bonding Agents. University Chemistry, 2025, 40(4): 1-9. doi: 10.3866/PKU.DXHX202401007

    13. [13]

      Cun WANGShaohan XUYuqian ZHANGYaoyao ZHANGTao GONGRong WENYuhang LIAOYanrong REN . Terbium complex electrochemiluminescent emitters: Synthesis and application in the detection of epinephrine. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1351-1360. doi: 10.11862/CJIC.20240427

    14. [14]

      Hong RAOYang HUYicong MAChunxin LÜWei ZHONGLihua DU . Synthesis and in vitro anticancer activity of phenanthroline-functionalized nitrogen heterocyclic carbene homo- and heterobimetallic silver/gold complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2429-2437. doi: 10.11862/CJIC.20240275

    15. [15]

      Jinwang WuQijing XieChengliang ZhangHaifeng Shi . Rationally Designed ZnFe1.2Co0.8O4/BiVO4 S-Scheme Heterojunction with Spin-Polarization for the Elimination of Antibiotic. Acta Physico-Chimica Sinica, 2025, 41(5): 100050-0. doi: 10.1016/j.actphy.2025.100050

    16. [16]

      Benhua Wang Chaoyi Yao Yiming Li Qing Liu Minhuan Lan Guipeng Yu Yiming Luo Xiangzhi Song . 一种基于香豆素氟离子荧光探针的合成、表征及性能测试——“科研反哺教学”在有机化学综合实验教学中的探索与实践. University Chemistry, 2025, 40(6): 201-209. doi: 10.12461/PKU.DXHX202408070

    17. [17]

      Yixuan Zhu Qingtong Wang Jin Li Lin Chen Junlong Zhao . Blog of Oxytocin. University Chemistry, 2024, 39(9): 134-140. doi: 10.12461/PKU.DXHX202310090

    18. [18]

      Jiaojiao Yu Bo Sun Na Li Cong Wen Wei Li . Improvement of Classical Organic Experiment Based on the “Reverse-Step Optimization Method”: Taking Synthesis of Ethyl Acetate as an Example. University Chemistry, 2025, 40(3): 333-341. doi: 10.12461/PKU.DXHX202405177

    19. [19]

      Mengyang LIHao XUZhonghao NIUChunhua GONGWeihui ZHONGJingli XIE . Highly effective catalytic synthesis of β-amino alcohols by using viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1294-1300. doi: 10.11862/CJIC.20250080

    20. [20]

      Ling Liu Haibin Wang Genrong Qiang . Curriculum Ideological and Political Design for the Comprehensive Preparation Experiment of Ethyl Benzoate Synthesized from Benzyl Alcohol. University Chemistry, 2024, 39(2): 94-98. doi: 10.3866/PKU.DXHX202304080

Metrics
  • PDF Downloads(17)
  • Abstract views(1756)
  • HTML views(215)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return