Citation: Niu Hongyan, Hu Zhengli, Ying Yilun, Long Yi-Tao. Detection of Single c-di-AMP by an Aerolysin Nanopore[J]. Acta Chimica Sinica, ;2019, 77(10): 989-992. doi: 10.6023/A19060230 shu

Detection of Single c-di-AMP by an Aerolysin Nanopore

  • Corresponding author: Ying Yilun, yilunying@nj.edu.cn
  • Received Date: 24 June 2019
    Available Online: 13 October 2019

    Fund Project: the National Ten Thousand Talent Program for Young Top-notch Talent AAAthe National Natural Science Foundation of China 21834001the National Natural Science Foundation of China 61871183the National Natural Science Foundation of China 21922405Project supported by the National Natural Science Foundation of China (Nos. 21922405, 61871183 and 21834001) and the National Ten Thousand Talent Program for Young Top-notch Talent

Figures(3)

  • Cyclic di-AMP (c-di-AMP) is a ubiquitous second messenger in prokaryotic cells. c-di-AMP can not only effectively regulate various physiological processes such as cell growth, ion transport and cell wall metabolism balance, but also trigger type I interferon response to inspire the body's immune response. Nanopore-based single molecule detection technology is an emerging single molecule detection method which is currently applied to various fields since it has many advantages such as high speed, label-free, high sensitivity and low cost. Aerolysin is a robust biological nanopore with high temporal resolution and high current resolution, which has achieved single oligonucleotide detection, polysaccharide analysis and the studies of enzymolysis kinetics. Aerolysin nanopore is negatively-charged protein nanopore which has numerous negatively charged amino acid residues around its cis entrances. The electrostatic repulsion between the negatively charged c-di-AMP and negatively charged amino acid residues around the cis entrances prevents c-di-AMP entering the nanopore. In this study, 1.0 mol/L LiCl was used as electrolyte solution to facilitate aerolysin analysis of single c-di-AMP molecule. Each event can be characterized by two parameters, the current blockade, I/I0, and the blockade time, τoff. The blockades are classified into two populations as PI and PII. The PI events are assigned to c-di-AMP that bump into the pore and then diffuse away. PII events are assigned to traversing of c-di-AMP through the nanopore. Compared with potassium ions, lithium ion can be more effectively to associate with the negative charges on the aerolysin nanopore surface and reduce the electrostatic repulsion between the c-di-AMP molecule and the Aerolysin. The results showed that number of PI events in per minute was significantly increased in 1.0 mol/L LiCl. The number of PI events in per minute in LiCl is 30 times than that in KCl at 90 mV. Hence, Aerolysin nanopore can be used as an ultrasensitive single molecule sensor for cyclic dinucleotides.
  • 加载中
    1. [1]

      Maelfait, J.; Rehwinkel, J. Immunity 2017, 46, 337.  doi: 10.1016/j.immuni.2017.03.005

    2. [2]

      Dey, B.; Dey, R. J.; Cheung, L. S.; Pokkali, S.; Guo, H.; Lee, J. H.; Bishai, W. R. Nat. Med. 2015, 21, 401.  doi: 10.1038/nm.3813

    3. [3]

      Corrigan, R. M.; Campeotto, I.; Jeganathan, T.; Roelofs, K. G.; Lee, V. T.; Gründling, A. Proc. Natl. Acad. Sci. U. S. A. 2013, 110, 9084.  doi: 10.1073/pnas.1300595110

    4. [4]

      Underwood, A. J.; Zhang, Y.; Metzger, D. W.; Bai, G. J. Microbiol. Meth. 2014, 107, 58.  doi: 10.1016/j.mimet.2014.08.026

    5. [5]

      Bai, Y.; Yang, J.; Zhou, X.; Ding, X.; Eisele, L. E.; Bai, G. PLoS One 2012, 7, e35206.  doi: 10.1371/journal.pone.0035206

    6. [6]

      Barker, J. R.; Koestler, B. J.; Carpenter, V. K.; Burdette, D. L.; Waters, C. M.; Vance, R. E.; Valdivia, R. H. mBio. 2013, e00018.

    7. [7]

      Kellenberger, C. A.; Wilson, S. C.; Sales-Lee, J.; Hammond, M. C. J. Am. Chem. Soc. 2013, 135, 4906.  doi: 10.1021/ja311960g

    8. [8]

      Underwood, A. J.; Zhang, Y.; Metzger, D. W.; Bai, G. J. Microbiol. Methods 2014, 107, 58.  doi: 10.1016/j.mimet.2014.08.026

    9. [9]

      Cao, C.; Long, Y.-T. Acc. Chem. Res. 2018, 5, 331.

    10. [10]

      Li, Q.; Lin, Y.; Ying, Y.-L.; Liu, S.-C.; Long, Y.-T. Sci. Sin. Chim. 2017, 47, 1445 (in Chinese).

    11. [11]

      Jiang, Y.; Feng, Y.; Su, J.; Nie, J.; Cao, L.; Mao, L.; Jiang, L.; Guo, W. J. Am. Chem. Soc. 2017, 139, 18739.  doi: 10.1021/jacs.7b11732

    12. [12]

      Qiu, H.; Sarathy, A.; Schulten, K.; Leburton, J. P. npj 2D Mater. Appl. 2017, 1, 3.  doi: 10.1038/s41699-017-0005-7

    13. [13]

      Sha, J. J.; Shi, H.; Zhang, Y.; Chen, C.; Liu, L.; Chen, Y. ACS Sensors 2017, 2, 506.  doi: 10.1021/acssensors.6b00718

    14. [14]

      Kasianowicz, J.; Brandin, E.; Branton, D.; Deamer, D. Proc. Natl. Acad. Sci. U. S. A. 1996, 93, 13770.  doi: 10.1073/pnas.93.24.13770

    15. [15]

      Ying, Y.; Zhang, X.; Liu, Y.; Xue, M.; Li, H.; Long, Y.-T. Acta Chim. Sinica 2013, 71, 44 (in Chinese).
       

    16. [16]

      Ying, Y.-L.; Chao, C.; Hu, Y.-X.; Long, Y.-T. Natl. Sci. Rev. 2018, 5, 450.  doi: 10.1093/nsr/nwy029

    17. [17]

      Sha, J. J.; Xu, B.; Chen, Y. F.; Yang, Y. J. Acta Chim. Sinica 2017, 75, 1121 (in Chinese).
       

    18. [18]

      Qiu, H.; Girdhar, A.; Schulten, K.; Leburton, J. P. ACS Nano 2016, 10, 4482.  doi: 10.1021/acsnano.6b00226

    19. [19]

      Parker, M. W.; Buckley, J. T.; Postma, J. P. M.; Tucker, A. D.; Leonard, K.; Pattus, F.; Tsernoglou, D. Nature 1994, 367, 292.  doi: 10.1038/367292a0

    20. [20]

      Cao, C.; Liao, D. F.; Ying, Y. L.; Long, Y. T. Acta Chim. Sinica 2016, 74, 734 (in Chinese).
       

    21. [21]

      Cao, C.; Ying, Y. L.; Hu, Z. L.; Liao, D. F.; Tian, H.; Long, Y. T. Nat. Nanotech. 2016, 11, 713.  doi: 10.1038/nnano.2016.66

    22. [22]

      Fennouri, A.; Przybylski, C.; Pastoriza-Gallego, M.; Bacri, L.; Auvray, L.; Daniel, R. ACS Nano 2012, 6, 9672.  doi: 10.1021/nn3031047

    23. [23]

      Hu, Z.; Du, J.; Ying, Y.; Peng, Y.; Cao, C.; Long, Y.-T. Acta Chim. Sinica 2017, 75, 1087 (in Chinese).
       

    24. [24]

      Xi, D.; Shang, J.; Fan, E.; You, J.; Zhang, S.; Wang, H. Anal. Chem. 2016, 88, 10540.  doi: 10.1021/acs.analchem.6b02620

    25. [25]

      Cressiot, B.; Braselmann, E.; Oukhaled, A.; Elcock, A. H.; Pelta, J.; Clark, P. L. ACS Nano 2015, 9, 9050.  doi: 10.1021/acsnano.5b03053

    26. [26]

      Hu, Z. L.; Li, M. Y.; Liu, S. C.; Ying, Y. L.; Long, Y. T. Chem. Sci. 2019, 10, 354.  doi: 10.1039/C8SC03927E

    27. [27]

      Yang, J.; Li, S.; Wu, X.-Y.; Long, Y.-T. Chin. J. Anal. Chem. 2017, 45, 1766.  doi: 10.1016/S1872-2040(17)61053-3

    28. [28]

      Iacovache, I.; De Carlo, S.; Cirauqui, N.; Dal Peraro, M.; Van Der Goot, F. G.; Zuber, B. Nat. Commun. 2016, 7, 12062.  doi: 10.1038/ncomms12062

    29. [29]

      Kowalczyk, S. W.; Wells, D. B.; Aksimentiev, A.; Dekker, C. Nano Lett. 2012, 12, 1038.  doi: 10.1021/nl204273h

    30. [30]

      Boukhet, M.; Piguet, F.; Ouldali, H.; Pastoriza-Gallego, M.; Pelta, J.; Oukhaled, A. Nanoscale 2016, 8, 18352.  doi: 10.1039/C6NR06936C

    31. [31]

      Bhattacharya, S.; Muzard, J.; Payet, L.; Mathé, J.; Bockelmann, U.; Aksimentiev, A.; Viasnoff, V. J. Phys. Chem. C 2011, 115, 4255.

    32. [32]

      Sutherland, T. C.; Long, Y. T.; Stefureac, R. I.; Bediako-Amoa, I.; Kraatz, H. B.; Lee, J. S. Nano Lett. 2004, 4, 1273.  doi: 10.1021/nl049413e

    33. [33]

      Stefureac, R.; Long, Y. T.; Kraatz, H. B.; Howard, P.; Lee, J. S. Biochemistry 2006, 45, 9172.  doi: 10.1021/bi0604835

    34. [34]

      Kasianowicz, J. J.; Brandin, E.; Branton, D.; Deamer, D. W. P. Natl. Acad. Sci. 1996, 93, 13770.  doi: 10.1073/pnas.93.24.13770

    35. [35]

      Corrigan, R. M.; Abbott, J. C.; Burhenne, H.; Kaever, V.; Gründling, A. PLoS Pathog. 2011, 7, e1002217.  doi: 10.1371/journal.ppat.1002217

    36. [36]

      Corrigan, R. M.; Bowman, L.; Willis, A. R.; Kaever, V.; Gründling, A. J. Biol. Chem. 2015, 290, 5826.  doi: 10.1074/jbc.M114.598300

    37. [37]

      Dengler, V.; McCallum, N.; Kiefer, P.; Christen, P.; Patrignani, A.; Vorholt, J. A.; BergerBächi, B.; Senn, M. M. PLoS One 2013, 8, e73512.  doi: 10.1371/journal.pone.0073512

    38. [38]

      Cao, C.; Liao, D. F.; Yu, J.; Tian, H.; Long, Y. T. Nat. Protoc. 2017, 12, 1901.  doi: 10.1038/nprot.2017.077

  • 加载中
    1. [1]

      Meijin Li Xirong Fu Xue Zheng Yuhan Liu Bao Li . The Marvel of NAD+: Nicotinamide Adenine Dinucleotide. University Chemistry, 2024, 39(9): 35-39. doi: 10.12461/PKU.DXHX202401027

    2. [2]

      Shiyang HeDandan ChuZhixin PangYuhang DuJiayi WangYuhong ChenYumeng SuJianhua QinXiangrong PanZhan ZhouJingguo LiLufang MaChaoliang Tan . Pt Single-Atom-Functionalized 2D Al-TCPP MOF Nanosheets for Enhanced Photodynamic Antimicrobial Therapy. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-0. doi: 10.1016/j.actphy.2025.100046

    3. [3]

      Jingwen Wang Minghao Wu Xing Zuo Yaofeng Yuan Yahao Wang Xiaoshun Zhou Jianfeng Yan . Advances in the Application of Electrochemical Regulation in Investigating the Electron Transport Properties of Single-Molecule Junctions. University Chemistry, 2025, 40(3): 291-301. doi: 10.12461/PKU.DXHX202406023

    4. [4]

      Hanxue LIUShijie LIMeng RENXuling XUEHongke LIU . Design and antitumor properties of dehydroabietic acid functionalized cyclometalated iridium(Ⅲ) complex. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1483-1494. doi: 10.11862/CJIC.20250031

    5. [5]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    6. [6]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    7. [7]

      Yikai WangXiaolin JiangHaoming SongNan WeiYifan WangXinjun XuCuihong LiHao LuYahui LiuZhishan Bo . Thickness-Insensitive, Cyano-Modified Perylene Diimide Derivative as a Cathode Interlayer Material for High-Efficiency Organic Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-0. doi: 10.3866/PKU.WHXB202406007

    8. [8]

      Lirui Shen Kun Liu Ying Yang Dongwan Li Wengui Chang . Synthesis and Application of Decanedioic Acid-N-Hydroxysuccinimide Ester: Exploration of Teaching Reform in Comprehensive Applied Chemistry Experiment. University Chemistry, 2024, 39(8): 212-220. doi: 10.3866/PKU.DXHX202312035

    9. [9]

      Liuyun ChenWenju WangTairong LuXuan LuoXinling XieKelin HuangShanli QinTongming SuZuzeng QinHongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054

    10. [10]

      Zhiwen HUANGQi LIUJianping LANG . W/Cu/S cluster-based supramolecular macrocycles and their third-order nonlinear optical responses. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 79-87. doi: 10.11862/CJIC.20240184

    11. [11]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    12. [12]

      Shasha SUNWeichun HUANGMengke WANG . Research progress of interface regulation strategies and applications of two‑dimensional MXenes. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1465-1482. doi: 10.11862/CJIC.20240430

    13. [13]

      Zhengli Hu Jia Wang Yi-Lun Ying Shaochuang Liu Hui Ma Wenwei Zhang Jianrong Zhang Yi-Tao Long . Exploration of Ideological and Political Elements in the Development History of Nanopore Electrochemistry. University Chemistry, 2024, 39(8): 344-350. doi: 10.3866/PKU.DXHX202401072

    14. [14]

      Pingwei Wu . Application of Diamond Software in Simplex Teaching. University Chemistry, 2024, 39(3): 118-121. doi: 10.3866/PKU.DXHX202311043

    15. [15]

      Yu PengJiawei ChenYue YinYongjie CaoMochou LiaoCongxiao WangXiaoli DongYongyao Xia . Tailored cathode electrolyte interphase via ethylene carbonate-free electrolytes enabling stable and wide-temperature operation of high-voltage LiCoO2. Acta Physico-Chimica Sinica, 2025, 41(8): 100087-0. doi: 10.1016/j.actphy.2025.100087

    16. [16]

      Jizhou LiuChenbin AiChenrui HuBei ChengJianjun Zhang . Accelerated Interfacial Electron Transfer in Perovskite Solar Cell by Ammonium Hexachlorostannate Modification and fs-TAS Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-0. doi: 10.3866/PKU.WHXB202402006

    17. [17]

      Wenjun Yang Qiaoling Tan Wenjiao Xie Xiaoyu Pan Youyong Yuan . Construction and Characterization of Calcium Alginate Microparticle Drug Delivery System: A Novel Design and Teaching Practice in Polymer Experiments. University Chemistry, 2025, 40(3): 371-380. doi: 10.12461/PKU.DXHX202405150

    18. [18]

      Huanhuan XIEYingnan SONGLei LI . Two-dimensional single-layer BiOI nanosheets: Lattice thermal conductivity and phonon transport mechanism. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 702-708. doi: 10.11862/CJIC.20240281

    19. [19]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    20. [20]

      Jinwang WuQijing XieChengliang ZhangHaifeng Shi . Rationally Designed ZnFe1.2Co0.8O4/BiVO4 S-Scheme Heterojunction with Spin-Polarization for the Elimination of Antibiotic. Acta Physico-Chimica Sinica, 2025, 41(5): 100050-0. doi: 10.1016/j.actphy.2025.100050

Metrics
  • PDF Downloads(7)
  • Abstract views(1649)
  • HTML views(238)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return