Citation: Guan Xiaolin, Wang Lin, Li Zhifei, Liu Meina, Wang Kailong, Lin Bin, Yang Xueqing, Lai Shoujun, Lei Ziqiang. Preparation of Multi-stimulus Responsive Polymer Nanospheres Based on AIE Effect and Its Cell Tracing Application[J]. Acta Chimica Sinica, ;2019, 77(10): 1036-1044. doi: 10.6023/A19060226 shu

Preparation of Multi-stimulus Responsive Polymer Nanospheres Based on AIE Effect and Its Cell Tracing Application

  • Corresponding author: Guan Xiaolin, guanxiaolin@nwnu.edu.cn
  • Received Date: 21 June 2019
    Available Online: 13 October 2019

    Fund Project: the National Natural Science Foundation of China 21761032the Key Laboratory of Ecological Environment Related Polymer Materials, Ministry of Education Open Fund KF-18-05Project supported by the National Natural Science Foundation of China (Nos. 21761032, 51363019) and the Key Laboratory of Ecological Environment Related Polymer Materials, Ministry of Education Open Fund (KF-18-05)the National Natural Science Foundation of China 51363019

Figures(9)

  • In recent years, fluorescent bioimaging technology has great advantages in the fields of life science research and medical diagnosis because of its advantages of fast and effective, high sensitivity, easy realization of multi-channel imaging and economic efficiency. Organic fluorescent dyes have been widely used as biological imaging reagents due to their excellent photoelectric properties, functional modification, adjustable optical properties, and good biocompatibility. However, conventional organic fluorescent molecules cause aggregation-caused quenching (ACQ) due to π-π stacking in the aggregated state, limiting their bioimaging applications in aggregated or high concentrations. Since the discovery of the unique luminescence phenomenon of aggregation-induced emission (AIE), the ACQ phenomenon of traditional fluorescent materials has been eliminated. Stimulating responsive polymer nanoparticles have been widely used in the life sciences due to their combination of nanoparticle and polymer advantages and their ability to respond intelligently with environmental changes. Therefore, nanomaterials with excellent aggregation-induced emission (AIE) property, environmental stimuli responsiveness and biocompatibility based on AIE molecules and smart responsive polymers have shown attractive application prospects in the life sciences. A kind of multi-responsive AIE-active polymer nanospheres, which were composed of tetraphenylethylene (TPE) and stimuli-responsive poly[N]-2-(diethylamino)-ethyl]acrylamide (PDEAEAM), were constructed in this study. Firstly, a multi-stimulation responsive monomer N-[2-(diethylamino)ethyl]acrylamide (DEAEAM) and TPE derivative tetraphenylethene-4-(12-hydroxydodecyl-2-methylpropionyl) (TPE-BIB) with propionyl bromide were synthesized, respectively, and a multi-stimuli-responsive amphiphilic polymer of tetraphenylethene-graft-poly[N-[2-(diethylamino)ethyl]acrylamide] (TPE-g-PDEAEAM) was then successfully synthesized by atom transfer radical polymerization (ATRP) using TPE-BIB as initiator. Lastly, polymer nanospheres TPE-g-PDEAEAM of approximately 200 nm were formed by a self-assembling process. The results of the performed experiments showed that the LCST of TPE-g-PDEAEAM in aqueous solution is about 60℃. Meanwhile, the luminescence change of TPE-g-PDEAEAM at different temperatures from 20 to 66℃ was observed. The fluorescence intensity of TPE-g-PDEAEAM firstly decreased with increasing temperature from 20 to 58℃, and the fluorescence intensity increased with increasing temperature from 58 to 66℃. The phase transfer of PDEAEAM in TPE-g-PDEAEAM may be the reason of luminescence change which may lead to the fluorescent temperature response. Moreover, the fluorescence intensity of TPE-g-PDEAEAM nanospheres in aqueous solution increased with increasing temperature pH. Besides, the fluorescence intensity of TPE-g-PDEAEAM decreased dramatically when the volume of CO2 increased from 0.0 to 1.2 mL. Therefore, TPE-g-PDEAEAM was a new temperature and pH/CO2 responsive materials and might be used as multi-functional smart fluorescent sensors. More importantly, the fluorescent signals were significantly strong in HeLa cells after cells were incubated with TPE-g-PDEAEAM for 24 h based on the characteristic of AIE fluorescence and low cytotoxicity. The resultant nanospheres were able to be internalized by the cancer cells and effectively track the HeLa cells for as long as 11 passages. So, the polymer nanomaterial is an ideal living cell fluorescent tracer probe, which is expected to be applied as biosensors, long-term cell traces and medical biomaterials.
  • 加载中
    1. [1]

      Xia, Z. Q.; Shao, A. D.; Li, Q.; Zhu, S. Q.; Zhu, W. H. Acta Chim. Sinica 2016, 74, 351.
       

    2. [2]

      Guo, S.; Zheng, F.; Zeng, F.; Wu, S. Z. Chinese J. Polym. Sci. 2016, 34, 830.  doi: 10.1007/s10118-016-1793-5

    3. [3]

      Chen, Y.; Qiu, T.; Zhao, W.; Fan, L. Polym. Chem. 2015, 6, 1576.  doi: 10.1039/C4PY01615G

    4. [4]

      Yu, C.; Li, X.; Zeng, F.; Zheng, F.; Wu, S. Z. Chem. Commun. 2013, 49, 403.  doi: 10.1039/C2CC37329G

    5. [5]

      Sun, J. B.; Zhang, G. H.; Jia, X. Y.; Xue, P. C.; Jia, J. H.; Lu, R. Acta Chim. Sinica 2016, 74, 165.
       

    6. [6]

      Xu, S. Y.; Sun, X.; Ge, H.; Arrowsmith, R. L.; Fossey, J. S.; Pascu, S. I.; Jiang, Y. B.; James, T. D. Org. Biomol. Chem. 2015, 13, 4143.  doi: 10.1039/C4OB02267J

    7. [7]

      Mei, J.; Leung, N. L.; Kwok, R. T.; Lam, J. W.; Tang, B. Z. Chem. Rev. 2015, 115, 11718.  doi: 10.1021/acs.chemrev.5b00263

    8. [8]

      Gao, M.; Hu, Q.; Feng, G.; Tang, B. Z.; Liu, B. J. Mater. Chem. B 2014, 2, 3438.  doi: 10.1039/C4TB00345D

    9. [9]

      Liu, Z.; Xue, W.; Cai, Z.; Zhang, G.; Zhang, D. J. Mater. Chem. 2011, 21, 14487.  doi: 10.1039/c1jm12400e

    10. [10]

      Tang, X.; Bai, Q.; Peng, Q.; Gao, Y.; Li, J.; Liu, Y.; Yao, L.; Lu, P.; Yang, B.; Ma, Y. Chem. Mater. 2015, 27, 7050.  doi: 10.1021/acs.chemmater.5b02685

    11. [11]

      Zhang, Y.; Kong, L.; Shi, J.; Tong, B.; Zhi, J.; Feng, X.; Dong, Y. Chin. J. Chem. 2015, 33, 701.  doi: 10.1002/cjoc.201500116

    12. [12]

      Hu, F.; Zhang, G.; Zhan, C.; Zhang, W.; Yan, Y.; Zhao, Y.; Fu, H.; Zhang, D. Small 2015, 11, 1335.  doi: 10.1002/smll.201402051

    13. [13]

      Hu, R.; Xin, D. H.; Qin, A. J.; Tang, B. Z. Acta Polymerica Sinica 2018, 2, 132.  doi: 10.11777/j.issn1000-3304.2018.17280

    14. [14]

      Jiang, M. J.; Guo, Z. J.; Tang, B. Z. Sci. Technol. Rev. 2018, 36, 27.
       

    15. [15]

      Gao, Y.; Qu, Y.; Jiang, T.; Zhang, H.; He, N.; Li, B.; Wu, J.; Hua, J. J. Mater. Chem. C 2014, 2, 6353.

    16. [16]

      Li, S.; Langenegger, S. M.; Häner, R. Chem. Commun. 2013, 49, 5835.  doi: 10.1039/c3cc42706d

    17. [17]

      Singh, A.; Lim, C. K.; Lee, Y. D.; Maeng, J. H.; Lee, S.; Koh, J.; Kim, S. ACS Appl. Mater. Interfaces 2013, 5, 8881.  doi: 10.1021/am4012066

    18. [18]

      Ma, S. Q.; Ma, L.; Han, W. K.; Jiang, S.; Xu, B.; Tian, W. J. Sci. China Chem. 2018, 48, 683.
       

    19. [19]

      Wang, Z. L.; Yang, J. L.; Yang, Y. Q.; Xu, X.; Li, M. X.; Zhang, Y.; Fang, H.; Xu, H. J.; Wang, S. F. Chin. J. Org. Chem. 2018, 38, 1401.
       

    20. [20]

      Wang, Z.; Chen, S.; Lam, J. W. Y. J. Am. Chem. Soc. 2013, 135, 8238.  doi: 10.1021/ja312581r

    21. [21]

      Wang, D.; Su, H. F.; Tang, B. Z. Chem. Sci. 2018, 9, 3685.  doi: 10.1039/C7SC04963C

    22. [22]

      Wang, J.; Wu, Y. L.; Sun, L. H.; Zeng, F.; Wu, S. Z. Acta Chim. Sinica 2016, 74, 910.
       

    23. [23]

      Chen, S.; Jiang, F. J.; Cao, Z. Q.; Wang, G. J.; Dang, Z. M. Chem. Commun. 2015, 51, 12633.  doi: 10.1039/C5CC04087F

    24. [24]

      Guo, J.; Wang, N. J.; Peng, L.; Wu, J. J.; Ye, Q. Q.; Yuan, J. Y. J. Mater. Chem. B 2016, 4, 4009.

    25. [25]

      Yuan, T. T.; Dong, J.; Hana, G. X.; Wang, G. J. RSC Adv. 2016, 6, 10904.  doi: 10.1039/C5RA26894J

    26. [26]

      Karimi, M.; Ghasemi, A.; Zangabad, P. S.; Rahighi, R.; Beyzavi, J. A.; Vaseghi, K. A.; Haghani, M. L.; Bahramia, N. S.; Hamblin, M. R. Chem. Soc. Rev. 2016, 45, 1457.  doi: 10.1039/C5CS00798D

    27. [27]

      Guan, X. L; Meng, L.; Jin, Q. J.; Lu, B. C.; Chen, Y. B.; Li, Z. F.; Wang, L.; Lai, S. J.; Lei, Z. Q. Macromol. Mater. Eng. 2018, 303, 1700553.  doi: 10.1002/mame.201700553

    28. [28]

      Wang, Z.; Yong, T. Y.; Wan, J.; Li, Z. H.; Zhao, H.; Zhao, Y.; Gan, L.; Yang, X. L.; Xu, H. B.; Zhang, C. ACS Appl. Mater. Interfaces 2015, 7, 3420.  doi: 10.1021/am509161y

    29. [29]

      Yuan, Y.; Kwok, R. T. K.; Tang, B. Z.; Liu, B. Small 2015, 11, 4682.  doi: 10.1002/smll.201501498

    30. [30]

      Song, Z.; Wang, K.; Gao, C.; Wang, S.; Zhang, W. Q. Macromolecules 2016, 49, 162.  doi: 10.1021/acs.macromol.5b02458

    31. [31]

      Jiang, X.; Feng, C.; Lu, G.; Huang, X. ACS Macro Lett. 2014, 3, 1121.  doi: 10.1021/mz5005822

    32. [32]

      Zhang, G. Z.; Jiang, M.; Wu, Q. Chin. Polym. Bull. 2005, 4, 82.
       

    33. [33]

      Anirudhan, T. S.; Nair, A. S. J. Mater. Chem. B 2018, 6, 428.  doi: 10.1039/C7TB02292A

    34. [34]

      Zhang, Y. F.; Wu, T.; Liu, S. Y. Macromol. Chem. Phys. 2007, 208, 2492.  doi: 10.1002/macp.200700293

  • 加载中
    1. [1]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    2. [2]

      Xing TianDi WuWanheng WeiGuifu DaiZhanxian LiBenhua WangMingming Yu . A lipid droplets-targetable fluorescent probe for polarity detection in cells of iron death, inflammation and fatty liver tissue. Chinese Chemical Letters, 2024, 35(6): 108912-. doi: 10.1016/j.cclet.2023.108912

    3. [3]

      Ya-Ping LiuZhi-Rong GuiZhen-Wen ZhangSai-Kang WangWei LangYanzhu LiuQian-Yong Cao . A phenylphenthiazide anchored Tb(Ⅲ)-cyclen complex for fluorescent turn-on sensing of ClO. Chinese Chemical Letters, 2025, 36(2): 109769-. doi: 10.1016/j.cclet.2024.109769

    4. [4]

      Ze WangHao LiangAnnan LiuXingchen LiLin GuanLei LiLiang HeAndrew K. WhittakerBai YangQuan Lin . Strength through unity: Alkaline phosphatase-responsive AIEgen nanoprobe for aggregation-enhanced multi-mode imaging and photothermal therapy of metastatic prostate cancer. Chinese Chemical Letters, 2025, 36(2): 109765-. doi: 10.1016/j.cclet.2024.109765

    5. [5]

      Jian Li Yu Zhang Rongrong Yan Kaiyuan Sun Xiaoqing Liu Zishang Liang Yinan Jiao Hui Bu Xin Chen Jinjin Zhao Jianlin Shi . 高效靶向示踪钙钛矿纳米系统光电增效抗肿瘤. Acta Physico-Chimica Sinica, 2025, 41(5): 100042-. doi: 10.1016/j.actphy.2024.100042

    6. [6]

      Donghui PANYuping XUXinyu WANGLizhen WANGJunjie YANDongjian SHIMin YANGMingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468

    7. [7]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    8. [8]

      Yue WANGZhizhi GUJingyi DONGJie ZHUCunguang LIUGuohan LIMeichen LUJian HANShengnan CAOWei WANG . Effects of kelp-derived carbon dots on embryonic development of zebrafish. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1209-1217. doi: 10.11862/CJIC.20230423

    9. [9]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    10. [10]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    11. [11]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    12. [12]

      Zeyi Yan Ruitao Liu Xinyu Qi Yuxiang Zhang Lulu Sun Xiangyuan Li Anchao Feng . Exploration of Suspension Polymerization: Preparation and Fluorescence Stability of Perovskite Polystyrene Microbeads. University Chemistry, 2025, 40(4): 72-79. doi: 10.12461/PKU.DXHX202405110

    13. [13]

      Haibo WanZhengzhong LvJicai JiangXuefeng ChengQingfeng XuHaibin ShiJianmei Lu . Multidimensional detection of roxarsone via AIE-based sulfates. Chinese Chemical Letters, 2025, 36(3): 110023-. doi: 10.1016/j.cclet.2024.110023

    14. [14]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    15. [15]

      YanYuan Jia Rong Rong Jie Liu Jing Guo GuoYu Jiang Shuo Guo . Unity is Strength, and Independence Shines: A Science Popularization Experiment on AIE and ACQ Effects. University Chemistry, 2024, 39(9): 349-358. doi: 10.12461/PKU.DXHX202402035

    16. [16]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    17. [17]

      Xuefei Leng Yanshai Wang Hai Wang Shengyang Tao . The In-Depth integration of “Industry-University-Research” in the Exploration and Practice of “Comprehensive Training in Polymer Engineering”. University Chemistry, 2025, 40(4): 66-71. doi: 10.12461/PKU.DXHX202405105

    18. [18]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    19. [19]

      Jia-Qi FengXiang TianRui-Ge CaoYong-Xiu LiWen-Long LiuRong HuangSi-Yong QinAi-Qing ZhangYin-Jia Cheng . An AIE-based theranostic nanoplatform for enhanced colorectal cancer therapy: Real-time tumor-tracking and chemical-enhanced photodynamic therapy. Chinese Chemical Letters, 2024, 35(12): 109657-. doi: 10.1016/j.cclet.2024.109657

    20. [20]

      Zijuan LIXuan LÜJiaojiao CHENHaiyang ZHAOShuo SUNZhiwu ZHANGJianlong ZHANGYanling MAJie LIZixian FENGJiahui LIU . Synthesis of visual fluorescence emission CdSe nanocrystals based on ligand regulation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 308-320. doi: 10.11862/CJIC.20240138

Metrics
  • PDF Downloads(30)
  • Abstract views(2218)
  • HTML views(423)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return