Citation: Cheng Shijie, Zeng Yang, Pei Yan, Fan Kangnian, Qiao Minghua, Zong Baoning. Synthesis and Catalysis of Pt/W-s-SBA-15 Catalysts with Short Channel for Glycerol Hydrogenolysis to 1, 3-Propanediol[J]. Acta Chimica Sinica, ;2019, 77(10): 1054-1062. doi: 10.6023/A19060219 shu

Synthesis and Catalysis of Pt/W-s-SBA-15 Catalysts with Short Channel for Glycerol Hydrogenolysis to 1, 3-Propanediol

  • Corresponding author: Qiao Minghua, mhqiao@fudan.edu.cn Zong Baoning, zongbn.ripp@sinopec.com
  • Received Date: 18 June 2019
    Available Online: 6 October 2019

    Fund Project: Project supported by the National Key Research and Development Project of China (No. 2016YFB0301602), the National Natural Science Foundation of China (No. 21872035), Science and Technology Commission of Shanghai Municipality (No. 08DZ2270500), and State Key Laboratory of Catalytic Materials and Reaction Engineering (RIPP, SINOPEC)the National Natural Science Foundation of China 21872035Science and Technology Commission of Shanghai Municipality 08DZ2270500the National Key Research and Development Project of China 2016YFB0301602

Figures(9)

  • The mesoporous SBA-15 molecular sieves doped in situ by W with channels parallel to the short axis (W-s-SBA-15) were synthesized by using decane as cosolvent and trimethylbenzene (TMB) as pore-expanding agent, which were used as the supports for the preparation of the Pt/W-s-SBA-15 catalysts. The effect of the loadings of Pt and W on the catalytic performance in glycerol hydrogenolysis to 1, 3-propanediol (1, 3-PDO) was investigated. The morphology, chemical states of Pt and W, and acidity of the catalysts were systematically characterized by using Brunauer-Emmett-Teller (BET), scanning electron microscopy (SEM), transmission electron microscopy (TEM), CO pulsed adsorption, X-ray photoelectron spectroscopy (XPS), Raman, ultraviolet-visible diffuse reflectance spectra (UV-Vis DRS), Fourier transform infrared spectroscopy (FT-IR) and FT-IR of adsorbed pyridine analysis (Py-IR). The BET and TEM results revealed that there are two kinds of pores in the structure:the mesoporous channels parallel to the short axis and honeycomb-like macropores. The Pt dispersion and active surface area calculated from CO chemical adsorption, firstly increased and then decreased with the increase in the Pt and W loadings. The highly dispersed tungsten species were assigned to the single-site WO4 on the basis of the characterization results of Raman, UV-Vis DRS, and FT-IR. The XPS results indicated that the amount of the Pt-O-Si/W linkages and the Ptδ+/(Pt0+Ptδ+) ratio are the highest on the 4Pt/W-s-SBA-15(1/480) catalyst which promote the dispersion of the Pt particles on the catalyst surface. With the increase in the loadings of Pt and W, the conversion of glycerol and the conversion of glycerol to liquid products (CTL) increased monotonically, while the selectivity to 1, 3-PDO experienced a volcanic-type evolution. At the reaction temperature of 433 K, H2 pressure of 4.0 MPa, and reaction time of 24 h, the highest yield of 1, 3-PDO of 49.0% was resulted on the 4Pt/W-s-SBA-15(1/480) catalyst. It is identified that the conversion of glycerol on the Pt/W-s-SBA-15 catalysts is proportional to the active surface area of Pt on the catalyst, while the small Pt particle size and the strong synergy between Pt and the highly dispersed WO4 species are advantageous to the formation of 1, 3-PDO.
  • 加载中
    1. [1]

      Sun, Q. M.; Wang, C. H.; Wang, L. M.; Zhang, L.; Fan, Y. C. Chem. Ind. Eng. Prog. 2017, 36, 161.
       

    2. [2]

      Ding, S.; Ge, Q. F.; Zhu, X. L. Acta Chim. Sinica 2017, 75, 29.  doi: 10.3969/j.issn.0253-2409.2017.01.005
       

    3. [3]

      Zhou, C. H.; Beltramini, J. N.; Fan, Y. X.; Lu, G. Q. Chem. Soc. Rev. 2008, 37, 527.  doi: 10.1039/B707343G

    4. [4]

      Behr, A.; Eilting, J.; Irawadi, K.; Leschinski, J.; Lindner, F. Green Chem. 2008, 10, 13.  doi: 10.1039/B710561D

    5. [5]

      Nimlos, M. R.; Blanksby, S. J.; Qian, X.; Himmel, M. E. J. Phys. Chem. A 2006, 110, 6145.  doi: 10.1021/jp060597q

    6. [6]

      Qin, L. Z.; Song, M. J.; Chen, C. L. Green Chem. 2010, 12, 1466.  doi: 10.1039/c0gc00005a

    7. [7]

      Zhu, S. H.; Zhu, Y. L.; Hao, S. L.; Zheng, H. Y.; Mo, T.; Li, Y. W. Green Chem. 2012, 14, 2607.  doi: 10.1039/c2gc35564g

    8. [8]

      Zhou, W.; Zhao, Y. J.; Wang, Y.; Wang, S. P. ChemCatChem 2016, 8, 3663.  doi: 10.1002/cctc.201600981

    9. [9]

      García-Fernández, S.; Gandarias, I.; Requies, J.; Güemez, M. B.; Bennici, S.; Auroux, A.; Arias, P. L. J. Catal. 2015, 323, 65.  doi: 10.1016/j.jcat.2014.12.028

    10. [10]

      Racha, A.; Tomoo, M.; Takato, M.; Koichiro, J.; Kiyotomi, K. ChemSusChem 2013, 6, 1345.  doi: 10.1002/cssc.201300196

    11. [11]

      Gong, L. F.; Yuan, L.; Ding, Y. J.; Lin, R. H.; Li, J. W.; Dong, W. D.; Tao, W.; Chen, W. M. Appl. Catal., A 2010, 390, 119.  doi: 10.1016/j.apcata.2010.10.002

    12. [12]

      Wang, J.; Zhao, X. C.; Wang, A. Q.; Zhang, T. ChemSusChem 2016, 9, 784.  doi: 10.1002/cssc.201501506

    13. [13]

      Zhao, X. C.; Wang, J.; Zhang, T.; Yang, M.; Lei, N.; Li, L.; Hou, B.; Miao, S.; Pan, X.; Wang, A. ChemSusChem 2016, 10, 819.

    14. [14]

      Feng, A. H.; Yu, Y.; Yu, Y.; Song, L. X. Acta Chim. Sinica 2018, 76, 27.  doi: 10.3969/j.issn.0253-2409.2018.01.004
       

    15. [15]

      Shi, G. J.; Xu, J. Y.; Song, Z. G.; Cao, Z.; Jin, K.; Xu, S. H.; Yan, X. T. Mol. Catal. 2018, 456, 22.  doi: 10.1016/j.mcat.2018.06.018

    16. [16]

      Wang, F.; Li, J. S.; Yuan, J. F.; Sun, X. Y.; Shen, J. Y.; Han, W. Q.; Wang, L. J. Catal. Commun. 2011, 12, 1415.  doi: 10.1016/j.catcom.2011.05.021

    17. [17]

      Zhu, J. L.; Wang, T.; Xu, X. L.; Xiao, P. Appl. Catal., B 2013, 130, 197.

    18. [18]

      Gu, M. Y.; Dong, W. J.; Peng, B. Y.; Long, Y.; Zheng, S.; Zhang, W.; Zhang, Y. L. Ind. Eng. Chem. Res. 2017, 56, 13572.  doi: 10.1021/acs.iecr.7b02899

    19. [19]

      Priya, S. S.; Kumar, V. P.; Kantam, M. L.; Bhargava, S. K.; Srikanth, A.; Chary, K. V. R. Ind. Eng. Chem. Res. 2015, 54, 9104.  doi: 10.1021/acs.iecr.5b01814

    20. [20]

      Fan, Y. Q.; Cheng, S. J.; Wang, H.; Ye, D. H.; Xie, S. H.; Pei, Y.; Hu, H. R.; Li, Z. H.; Hua, W. M.; Qiao, M. H. Green Chem. 2017, 19, 2174.  doi: 10.1039/C7GC00317J

    21. [21]

      Feng, S. H.; Zhao, B. b.; Liu, L.; Dong, J. X.; Feng, S. H.; Zhao, B. B.; Liu, L.; Dong, J. X. Ind. Eng. Chem. Res. 2017, 56, 11065.  doi: 10.1021/acs.iecr.7b02951

    22. [22]

      Zhang, H.; Sun, J. M.; Ma, D.; Bao, X. H.; Klein-Hoffmann, A.; Weinberg, G.; Su, D. S.; Schlögl, R. J. Am. Chem. Soc. 2004, 126, 7440.  doi: 10.1021/ja048630e

    23. [23]

      Everett, D. H. Pure Appl. Chem. 1972, 31, 578.

    24. [24]

      Kruk, M.; Jaroniec, M. Chem. Mater. 2001, 13, 3169.  doi: 10.1021/cm0101069

    25. [25]

      Liu, J. L.; Zhu, L. J.; Pei, Y.; Zhuang, J. H.; Li, H.; Li, H. X.; Qiao, M. H.; Fan, K. N. Appl. Catal., A 2009, 353, 282.  doi: 10.1016/j.apcata.2008.10.056

    26. [26]

      Chen, X. Y.; Lou, Z. Y.; Qiao, M. H.; Fan, K. N.; Tsang, S. C.; He, H. Y. J. Phys. Chem. C 2008, 112, 1316.  doi: 10.1021/jp710962p

    27. [27]

      Nie, Y. Y.; Shang, S. N.; Xin, X.; Hua, W. M.; Yue, Y. H.; Gao, Z. Appl. Catal., A 2012, 433-434, 69.  doi: 10.1016/j.apcata.2012.04.040

    28. [28]

      Yasutaka, N.; Takeshi, H.; Kazuhiko, D.; Takagi, N.; Minami, T.; Shinjoh, H.; Matsumoto, S. I. J. Catal. 2006, 242, 103.  doi: 10.1016/j.jcat.2006.06.002

    29. [29]

      Zhang, Z. Y.; Zhu, Q. J.; Ding, J.; Dai, W. L.; Zong, B. N. Acta Phys. Chim. Sinica 2014, 30, 1527.  doi: 10.3866/PKU.WHXB201406121

    30. [30]

      Lwin, S.; Li, Y. Y.; Frenkel, A. I.; Wachs, I. E. ACS Catal. 2016, 6, 3061.  doi: 10.1021/acscatal.6b00389

    31. [31]

      Stein, A.; Fendorf, M.; Jarvie, T. P.; Mueller, K. T.; Benesi, A. J.; Mallouk, T. E. Chem. Mater. 1995, 7, 304.  doi: 10.1021/cm00050a012

    32. [32]

      Weber, R. S. J. Catal. 1995, 151, 470.  doi: 10.1006/jcat.1995.1052

    33. [33]

      Briot, E.; Piquemal, J. Y.; Vennat, M.; Brégeault, J. M.; Chottard, G.; Manoli, J. M. J. Mater. Chem. 2000, 10, 953.  doi: 10.1039/a908428b

    34. [34]

      Klepel, O.; Böhlmann, W.; Ivanov, E. B.; Riede, V.; Papp, H. Microporous Mesoporous Mater. 2004, 76, 105.  doi: 10.1016/j.micromeso.2004.07.038

    35. [35]

      Hu, B.; Liu, H.; Tao, K.; Xiong, C. R.; Zhou, S. H. J. Phys. Chem. C 2013, 117, 26385.  doi: 10.1021/jp4098028

    36. [36]

      Hu, J. C.; Wang, Y. D.; Chen, L. F. Microporous Mesoporous Mater. 2006, 93, 158.  doi: 10.1016/j.micromeso.2006.02.019

    37. [37]

      Iglesia, E.; Barton, D. G.; Soled, S. L.; Miseo, S.; Baumgartner, J. E.; Gates, W. E.; Fuentes, G. A.; Meitzner, G. D. Stud. Surf. Sci. Catal 1996, 101, 533.  doi: 10.1016/S0167-2991(96)80264-3

    38. [38]

      Wu, P.; Tatsumi, T.; Komatsu, T.; Yashima, T. J. Catal. 2001, 202, 245.  doi: 10.1006/jcat.2001.3278

    39. [39]

      Rada, S.; Rada, M.; Culea, E. J. Alloys Compd. 2013, 552, 10.  doi: 10.1016/j.jallcom.2012.10.061

    40. [40]

      Bal, R.; Ghosh, S.; Acharyya, S. S.; Sasaki, T. Green Chem. 2015, 17, 1867.  doi: 10.1039/C4GC02123A

    41. [41]

      Zhu, S. H.; Gao, X. Q.; Zhu, Y. L.; Zhu, Y. F.; Xiang, X. M.; Hu, C. X.; Li, Y. W. Appl. Catal., B 2013, 140-141, 60.  doi: 10.1016/j.apcatb.2013.03.041

    42. [42]

      Zhu, S. H.; Gao, X. Q.; Zhu, Y. L.; Li, Y. W. J. Mol. Catal. A 2015, 398, 391.  doi: 10.1016/j.molcata.2014.12.021

    43. [43]

      Massa, A.; Andersson, M.; Finoccino, E.; Busca, G. J. Catal. 2013, 297, 93.  doi: 10.1016/j.jcat.2012.09.021

    44. [44]

      Galano, A.; Rodriguez-Gattorno, G.; Torres-García, E. Phys. Chem. Chem. Phys. 2008, 10, 4181.  doi: 10.1039/b802934b

    45. [45]

      Parry, E. P. J. Catal. 1963, 2, 371.  doi: 10.1016/0021-9517(63)90102-7

    46. [46]

      Onfroy, T.; Clet, G.; Houalla, M. Microporous Mesoporous Mater. 2005, 82, 99.  doi: 10.1016/j.micromeso.2005.02.020

    47. [47]

      Emeis, C. A. J. Catal. 1993, 141, 347.  doi: 10.1006/jcat.1993.1145

    48. [48]

      Schmidt-Winkel, P.; Lukens, W. W.; Yang, P. D.; Margolese, D. I.; Lettow, J. S.; Ying, J. Y.; Stucky, G. D. Chem. Mater. 2000, 12, 686.  doi: 10.1021/cm991097v

    49. [49]

      Kurosaka, T.; Maruyama, H.; Naribayashi, I.; Sasaki, Y. Catal. Commun. 2008, 9, 1360.  doi: 10.1016/j.catcom.2007.11.034

    50. [50]

      Takasu, Y.; Teramoto, M.; Matsuda, Y. J. Chem. Soc. Chem. Commun. 1983, 22, 1329.

    51. [51]

      Wang, L.; Stuckert, N. R.; Chen, H.; Yang, R. T. J. Phys. Chem. C 2011, 115, 4793.  doi: 10.1021/jp111800c

  • 加载中
    1. [1]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    2. [2]

      Zhengyu ZhouHuiqin YaoYoulin WuTeng LiNoritatsu TsubakiZhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-0. doi: 10.3866/PKU.WHXB202312010

    3. [3]

      Shiyang HeDandan ChuZhixin PangYuhang DuJiayi WangYuhong ChenYumeng SuJianhua QinXiangrong PanZhan ZhouJingguo LiLufang MaChaoliang Tan . Pt Single-Atom-Functionalized 2D Al-TCPP MOF Nanosheets for Enhanced Photodynamic Antimicrobial Therapy. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-0. doi: 10.1016/j.actphy.2025.100046

    4. [4]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    5. [5]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    6. [6]

      Xin FengKexin GuoChunguang JiaBowen LiuSuqin CiJunxiang ChenZhenhai Wen . Hydrogen Generation Coupling with High-Selectivity Electrocatalytic Glycerol Valorization into Formate in an Acid-Alkali Dual-Electrolyte Flow Electrolyzer. Acta Physico-Chimica Sinica, 2024, 40(5): 2303050-0. doi: 10.3866/PKU.WHXB202303050

    7. [7]

      Yuanyuan Ping Wangqing Kong . 光催化碳氢键官能团化合成1-苯基-1,2-乙二醇. University Chemistry, 2025, 40(6): 238-247. doi: 10.12461/PKU.DXHX202408092

    8. [8]

      Xiaoxuan Yu Wukun Liu . Practice of Ideological and Political Education in Medicinal Chemistry for Pharmacy Administration Major: A Case Study on the Discovery of Cisplatin’s Anticancer Function. University Chemistry, 2025, 40(4): 408-414. doi: 10.12461/PKU.DXHX202405200

    9. [9]

      Xiaoyang Li Xiaowei Huang Yimeng Zhang Huan Liu Shao Jin Junpeng Zhuang . Comprehensive Chemical Experiments on the Synthesis of 1,3-Dibromo-5,5-Dimethylhydantoin and Its Application as a Brominating Reagent. University Chemistry, 2025, 40(7): 286-293. doi: 10.12461/PKU.DXHX202408035

    10. [10]

      Yinwu Su Xuanwen Zheng Jianghui Du Boda Li Tao Wang Zhiyan Huang . Green Synthesis of 1,3-Dibromoacetone Using Halogen Exchange Method: Recommending a Basic Organic Synthesis Teaching Experiment. University Chemistry, 2024, 39(5): 307-314. doi: 10.3866/PKU.DXHX202311092

    11. [11]

      Liuyun ChenWenju WangTairong LuXuan LuoXinling XieKelin HuangShanli QinTongming SuZuzeng QinHongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054

    12. [12]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    13. [13]

      Juan GuoMingyuan FangQingsong LiuXiao RenYongqiang QiaoMingju ChaoErjun LiangQilong Gao . Zero thermal expansion in Cs2W3O10. Chinese Chemical Letters, 2024, 35(7): 108957-. doi: 10.1016/j.cclet.2023.108957

    14. [14]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    15. [15]

      Yanglin JiangMingqing ChenMin LiangYige YaoYan ZhangPeng WangJianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 2309027-0. doi: 10.3866/PKU.WHXB202309027

    16. [16]

      Shuhui Li Rongxiuyuan Huang Yingming Pan . Electrochemical Synthesis of 2,5-Diphenyl-1,3,4-Oxadiazole: A Recommended Comprehensive Organic Chemistry Experiment. University Chemistry, 2025, 40(5): 357-365. doi: 10.12461/PKU.DXHX202407028

    17. [17]

      Ran YuChen HuRuili GuoRuonan LiuLixing XiaCenyu YangJianglan Shui . Catalytic Effect of H3PW12O40 on Hydrogen Storage of MgH2. Acta Physico-Chimica Sinica, 2025, 41(1): 100001-0. doi: 10.3866/PKU.WHXB202308032

    18. [18]

      Haitao WangLianglang YuJizhou JiangArramelJing Zou . S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(5): 2305047-0. doi: 10.3866/PKU.WHXB202305047

    19. [19]

      Ye WangRuixiang GeXiang LiuJing LiHaohong Duan . An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol. Acta Physico-Chimica Sinica, 2024, 40(7): 2307019-0. doi: 10.3866/PKU.WHXB202307019

    20. [20]

      Xinhao Yan Guoliang Hu Ruixi Chen Hongyu Liu Qizhi Yao Jiao Li Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073

Metrics
  • PDF Downloads(10)
  • Abstract views(1799)
  • HTML views(209)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return