Citation: Zhang Zhen, Gong Li, Zhou Xiao-Yu, Yan Si-Shun, Li Jing, Yu Da-Gang. Radical-Type Difunctionalization of Alkenes with CO2[J]. Acta Chimica Sinica, ;2019, 77(9): 783-793. doi: 10.6023/A19060208 shu

Radical-Type Difunctionalization of Alkenes with CO2

  • Corresponding author: Li Jing, jingli@scu.edu.cn Yu Da-Gang, dgyu@scu.edu.cn
  • Received Date: 12 June 2019
    Available Online: 12 September 2019

    Fund Project: the National Natural Science Foundation of China 21801025the National Natural Science Foundation of China 21822108the Fok Ying Tung Education Foundation 161013the "973" Project from the Ministry of Science and Technology of China 2015CB856600Project supported by the "973" Project from the Ministry of Science and Technology of China (No. 2015CB856600), the National Natural Science Foundation of China (Nos. 21822108, 21801025), the Fok Ying Tung Education Foundation (No. 161013) and the Fundamental Research Funds for the Central Universities

Figures(15)

  • CO2 is an ideal C1 source in chemical transformations. It is of great significance to utilize CO2 in chemical conversion to synthesize high value-added compounds, including carboxylic acids and carbonyl-containing heterocycles. On the other hand, the difunctionalization of olefins is an important organic reaction, which can efficiently convert easily available olefins into important compounds with structural diversity. However, due to the low reactivity of CO2 and the difficulty in controlling the selectivity, the difunctionalization of olefins with CO2 is highly challenging. Recently, the significant progress of radical chemistry has provided new strategies and promoted the development of novel transformations in this field. This Perspective summarizes the recent progress of the radical-type difunctionalization of olefins with CO2, including the oxy-alkylation, carbocarboxylation, silacarboxylation, thiocarboxylation, and dicarboxylation of alkenes with CO2. At the same time, we also highlight the mechanism with radicals and four kinds of pathways are proposed:(1) Free radicals attack olefins to form new carbon radical intermediates. The radicals are then oxidized to form carbocations, which are further captured by carbonates or carbamates. It is also possible for direct C-O bonding reaction or sequent C-I and C-O bonds formation. (2) The new carbon radical intermediates, in-situ generated through attack of alkenes with radicals, are reduced via single electron transfer into carbanions, which could attack CO2to form C-C bonds. (3) CO2is reduced into CO2 radical anions in the highly reductive reaction conditions. Once generated, the CO2 radical anions might attack olefins to form carboxylate bearing more stable carbon radical intermediates (such as benzylic ones) and further form C-C bonds or carbon-heteroatom bonds. (4) Olefins are reduced via single electron transfer into alkenyl free radical anions in the highly reductive reaction conditions. These anions may attack CO2to form carboxylate bearing carbon radical intermediates and are further reduced to generate carbanions. Finally they may attack another CO2to form succinic acid derivatives. We point out the challenges and predict the future development in the field, including the more challenging substrates, more reaction types, better selectivities, and deeper mechanistic understanding.
  • 加载中
    1. [1]

    2. [2]

    3. [3]

      (a) Sasano, K.; Takaya, J.; Iwasawa, N. J. Am. Chem. Soc. 2013, 135, 1251. (b) Sekine, K.; Sadamitsu, Y.; Yamada, T. Org. Lett. 2015, 17, 5706. (c) Moragas, T.; Gaydou, M.; Martin, R. Angew. Chem., Int. Ed. 2016, 55, 5053. (d) Miao, B.; Li, S.; Li, G.; Ma, S. Org. Lett. 2016, 18, 2556. (e) Nogi, K.; Fujihara, T.; Terao, J.; Tsuji, Y. J. Am. Chem. Soc. 2016, 138, 5547. (f) Gholap, S. S.; Takimoto, M.; Hou, Z. Chem. Eur. J. 2016, 22, 8547. (g) Yan, S.-S.; Zhu, L.; Ye, J.-H.; Zhang, Z.; Huang, H.; Zeng, H.; Li, C.-J.; Lan, Y.; Yu, D.-G. Chem. Sci. 2018, 9, 4873. (h) Song, L.; Zhu, L.; Zhang, Z.; Ye, J.-H.; Yan, S.-S.; Han, J.-L.; Yin, Z.-B.; Lan, Y.; Yu, D.-G. Org. Lett. 2018, 20, 3776. (i) Fu, L.; Li, S.; Cai, Z.; Ding, Y.; Guo, X.; Zhou, L.; Yuan, D.; Sun, Q.; Li, G. Nat. Catal. 2018, 1, 469. (j) Xiong, W. F.; Yan, D. H.; Qi, C. R.; Jiang, H. F. Org. Lett. 2018, 20, 672. (k) Wang, S.; Xi, C. J. Org. Lett. 2018, 20, 4131. (l) Song, L.; Cao, G.-M.; Zhou, W.; Ye, J.-H.; Zhang, Z.; Tian, X.-Y.; Li, J.; Yu, D.-G. Org. Chem. Front. 2018, 5, 2086. (m) Cai, Z.; Li, S.; Gao, Y.; Li, G. Adv. Synth. Catal. 2018, 360, 4005. (n) Huang, R.; Li, S.; Fu, L.; Li, G. Asian J. Org. Chem. 2018, 7, 1376. (o) Gao, Y.; Cai, Z.; Li, S.; Li, G. Org. Lett. 2019, 21, 3663. (p) Yan, S.-S.; Wu, D.-S.; Ye, J.-H.; Gong, L.; Zeng, X.; Ran, C.-K.; Gui, Y.-Y.; Li, J.; Yu, D.-G. ACS Catal. 2019, 9, 6987.

    4. [4]

      (a) Seo, H; Katcher, M. H.; Jamison, T. F. Nat. Chem. 2017, 9, 453. (b) Meng, Q.; Wang, S.; König, B. Angew. Chem., Int. Ed. 2017, 56, 13426. (c) Shimomaki, K.; Murata, K.; Martin, R.; Iwasawa, N. J. Am. Chem. Soc. 2017, 139, 9467. (d) Liao, L.-L.; Cao, G.-M.; Ye, J.-H.; Sun, G.-Q.; Zhou, W.-J.; Gui, Y.-Y.; Yan, S.-S.; Shen, G.; Yu, D.-G. J. Am. Chem. Soc. 2018, 140, 17338. (e) Ju, T.; Fu, Q.; Ye, J.-H.; Zhang, Z.; Liao, L.-L.; Yan, S.-S.; Tian, X.-Y.; Luo, S.-P.; Li, J.; Yu, D.-G. Angew. Chem. Int. Ed. 2018, 57, 13897. (f) Fan, X.; Gong, X.; Ma, M.; Wang, R.; Walsh, P. J. Nat. Commun. 2018, 9, 4936.

    5. [5]

      (a) Wang, H.; Lin, M.-Y.; Fang, H. J.; Chen, T. T.; Lu, J.-X. Chin. J. Chem. 2007, 25, 913. (b) Wang, H.; Du, Y. F.; Lin, M. Y.; Zhang, K.; Lu, J.-X. Chin. J. Chem. 2008, 26, 1745. (c) Jiao, K.; Li, Z.; Xu, X.; Zhang, L.; Li, Y.; Zhang, K.; Mei, T.-S. Org. Chem. Front. 2018, 5, 2244.

    6. [6]

      (a) Xin, Z.; Lescot, C.; Friis, S. D.; Daasbjerg, Kim; Skrydstrup, T. Angew. Chem. Int. Ed. 2015, 54, 6862. (b) Zhang, W.; Yang, M. W.; Lv, X. Green Chem. 2016, 18, 4181. (c) Zhang, Z.; Liao, L.-L.; Yan, S.-S.; Wang, L.; He, Y.-Q.; Ye, J.-H.; Li, J.; Zhi, Y.-G.; Yu, D.-G. Angew. Chem., Int. Ed., 2016, 55, 7068. (d) Wang, S.; Shao, P.; Du, G.; Xi, C. J. Org. Chem. 2016, 81, 6672.

    7. [7]

      (a) Hu, J.; Ma, J.; Zhu, Q.; Zhang, Z.; Wu, C.; Han, B. Angew. Chem. Int. Ed. 2015, 54, 5399. (b) Gao, X.; Yu, B.; Yang, Z.; Zhao, Y.; Zhang, H.; Hao, L.; Han, B.; Liu, Z. ACS Catal. 2015, 5, 6648. (c) Zhao, Y.; Wu, Y.; Yuan, G.; Hao, L.; Gao, X.; Yang, Z.; Yu, B.; Zhang, H.; Liu, Z. Chem. Asian J. 2016, 11, 2735.

    8. [8]

      (a) Li, Y.; Fang, X.; Junge, K.; Beller, M. Angew. Chem. Int. Ed. 2013, 52, 9568. (b) Zhang, Z.; Sun, Q.; Xia, C.; Sun, W. Org. Lett. 2016, 18, 6316. (c) Zhang, Y.; Wang, H.; Yuan, H.; Shi, F. ACS Sustainable Chem. Eng. 2017, 5, 5758. (d) Ren, X.; Zheng, Z.; Zhang, L.; Wang, Z.; Xia, C.; Ding, K. Angew. Chem., Int. Ed. 2017, 56, 310.

    9. [9]

      (a) Lehn, J.-M.; Ziessel, R. Proc. Natl. Acad. Sci. USA 1982, 79, 701. (b) Burgess, S. A.; Kendall, A. J.; Tyler, D. R.; Linehan, J. C.; Appel, A. M. ACS Catal. 2017, 7, 3089.

    10. [10]

      (a) Pupo, G.; Properzi, R.; List, B. Angew. Chem., Int. Ed. 2016, 55, 6099. (b) Riemer, D.; Mandaviya, B.; Schilling, W.; Götz, A. C.; Kühl, T.; Finger, M.; Das, S. ACS Catal. 2018, 8, 3030. (c) Roy, T.; Kim, M. J.; Yang, Y.; Kim, S.; Kang, G.; Ren, X.; Kadziola, A.; Lee, H.-Y.; Baik, M.-H. Lee, J.-W. ACS Catal. 2019, 9, 6006.

    11. [11]

      For selected reviews, see: (a) Cao, M.-Y.; Ren, X.; Lu, Z. Tetrahedron Lett. 2015, 56, 3732. (b) Chen, J.-R.; Yu, X.-Y.; Xiao, W.-J. Synthesis 2015, 47, 604. (c) Koike, T.; Akita, M. Acc. Chem. Res. 2016, 49, 1937. (d) Koike, T.; Akita, M. Chem 2018, 4, 409. (e) Li, W.; Xu, W.; Xie, J.; Yu, S.; Zhu, C. Chem. Soc. Rev. 2018, 47, 654. (f) Wu, X.; Wu, S.; Zhu, C. Tetrahedron Lett. 2018, 59, 1328.

    12. [12]

      (a) Yan, M.; Kawamata, Y.; Baran, P. S. Chem. Rev. 2017, 117, 13230. (b) Zhang, Z.; Ye, J.-H.; Wu, D.-S.; Zhou, Y.-Q.; Yu, D.-G. Chem. Asian J. 2018, 13, 2292. (c) Peshkov, V. A.; Pereshivko, O. P.; Nechaev, A. A; Peshkov, A. A.; Vander Eycken, E. V. Chem. Soc. Rev. 2018, 47, 3861. (d) Tortajada, A.; Juliá-Hernández, F.; Börjesson, M.; Moragas, T.; Martin, R. Angew. Chem., Int. Ed. 2018, 57, 15948. (e) Yan, S.-S.; Fu, Q.; Liao, L.-L.; Sun, G.-Q.; Ye, J.-H.; Gong, L.; Bo-Xue, Y.-Z.; Yu, D.-G. Coord. Chem. Rev. 2018, 374, 439. (f) Cao, Y.; He, X.; Wang, N.; Li, H.-R.; He, L.-N. Chin. J. Chem. 2018, 36, 644. (g) Hou, J.; Li, J.-S.; Wu, J. Asian J. Org. Chem. 2018, 7, 1439. (h) Tan, F.; Yin, G. Chin. J. Chem. 2018, 36, 545. (i) Yeung, C. S. Angew. Chem., Int. Ed. 2019, 58, 5492.

    13. [13]

      Luan, Y.-X.; Ye, M. Tetrahedron Lett. 2018, 59, 853.  doi: 10.1016/j.tetlet.2018.01.035

    14. [14]

      (a) Tominaga, K.-I.; Sasaki, Y. Catal. Commun. 2000, 1, 1. (b) Tominaga, K.-i.; Sasaki, Y. J. Mol. Catal. A: Chem. 2004, 220, 159. (c) Liu, Q.; Wu, L.; Fleischer, I.; Selent, D.; Franke, R.; Jackstell, R.; Beller, M. Chem.-Eur. J. 2014, 20, 6888. (d) Tani, Y.; Kuga, K.; Fujihara, T.; Terao, J.; Tsuji, Y. Chem. Commun. 2015, 51, 13020. (e) Gui, Y.-Y.; Hu, N.; Chen, X.-W.; Liao, L.-L.; Ju, T.; Ye, J.-H.; Zhang, Z.; Li, J.; Yu, D.-G. J. Am. Chem. Soc. 2017, 139, 17011.

    15. [15]

      Seo, H.; Liu, A.-F.; Jamison, T. F. J. Am. Chem. Soc. 2017, 139, 13969.  doi: 10.1021/jacs.7b05942

    16. [16]

      (a) Evans, D. A.; Bartroli, J.; Shih, L. T. J. Am. Chem. Soc. 1981, 103, 2127. (b) Pandit, N.; Singla, R. K.; Shrivastava, B. Int. J. Med. Chem. 2012, 2012, 159285. (c) Ed.: Acton, Q. A., Oxazolidinones-Advances in Research and Application, Scholarly Editions, Atlanta, U.S., 2012.

    17. [17]

      Ye, J.-H.; Song, L.; Zhou, W.-J.; Ju, T.; Yin, Z.-B.; Yan, S.-S.; Zhang, Z.; Li, J.; Yu, D.-G. Angew. Chem. Int. Ed. 2016, 55, 10022.  doi: 10.1002/anie.201603352

    18. [18]

      Zhu, L.; Ye, J.-H.; Duan, M.; Qi, X.; Yu, D.-G.; Bai, R.; Lan, Y. Org. Chem. Front. 2018, 5, 633.  doi: 10.1039/C7QO00838D

    19. [19]

      Ye, J.-H.; Zhu, L.; Yan, S.-S.; Miao, M.; Zhang, X.-C.; Zhou, W.-J.; Li, J.; Lan, Y.; Yu, D.-G. ACS Catal. 2017, 7, 8324.  doi: 10.1021/acscatal.7b02533

    20. [20]

      Wang, M.-Y.; Cao, Y.; Liu, X.; Wang, N.; He, L.-N.; Li, S.-H. Green Chem. 2017, 19, 1240.  doi: 10.1039/C6GC03200A

    21. [21]

      Yin, Z.-B.; Ye, J.-H.; Zhou, W.-J.; Zhang, Y.-H.; Ding, L.; Gui, Y.-Y.; Yan, S.-S.; Li, J.; Yu, D.-G. Org. Lett. 2017, 20, 190.

    22. [22]

      Zhou, W.-J.; Cao, G.-M.; Sen, G.; Zhu, X.-Y.; Gui, Y.-Y.; Ye, J.-H.; Sun, L.; Liao, L.-L.; Li, J.; Yu, D.-G. Angew. Chem., Int. Ed. 2017, 56, 15683.  doi: 10.1002/anie.201704513

    23. [23]

      (a) Sun, L.; Ye, J.-H.; Zhou, W.-J.; Zeng, X.; Yu, D.-G. Org. Lett. 2018, 20, 3049. (b) For a very recent work, see: Sun, S.; Zhou, C.; Yu, J.-T.; Cheng, J. Org. Lett. 2019, DOI: 10.1021/acs.org-lett.9b02700.

    24. [24]

      Yatham, V. R.; Shen, Y.; Martin, R. Angew. Chem., Int. Ed. 2017, 56, 10915.  doi: 10.1002/anie.201706263

    25. [25]

      Hou, J.; Ee, A.; Cao, H.; Ong, H.-W.; Xu, J.-H.; Wu J. Angew. Chem., Int. Ed. 2017, 57, 17220.

    26. [26]

      Ye, J.-H.; Miao, M.; Huang, H.; Yan, S.-S.; Yin, Z.-B.; Zhou, W.-J.; Yu, D.-G. Angew. Chem., Int. Ed. 2017, 56, 15416.  doi: 10.1002/anie.201707862

    27. [27]

      Senboku, H.; Komatsu, H.; Fujimura, Y.; Tokuda, M. Synlett 2001, 2001, 418.  doi: 10.1055/s-2001-11417

    28. [28]

      Yuan, G.-Q.; Jiang, H.-F.; Lin, C.; Liao, S.-J. Electrochim. Acta 2008, 53, 2170.  doi: 10.1016/j.electacta.2007.09.023

    29. [29]

      Li, C.-H.; Yuan, G.-Q.; Ji, X.-C.; Wang, X.-J.; Ye, J.-S.; Jiang, H.-F. Electrochim. Acta 2011, 56, 1529.  doi: 10.1016/j.electacta.2010.06.057

    30. [30]

      For a very recent work on phosphonocarboxylation of alkenes with CO2, see: Fu, Q.; Bo, Z.-Y.; Ye, J.-H.; Ju, T.; Huang, H.; Liao, L.-L.; Yu, D.-G. Nat. Commun. 2019, 10, 3592.

  • 加载中
    1. [1]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    2. [2]

      Tongyan Yu Pan Xu . Visible-Light Photocatalyzed Radical Rearrangement Reaction. University Chemistry, 2025, 40(7): 169-176. doi: 10.12461/PKU.DXHX202409070

    3. [3]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    4. [4]

      Zhenxing Liu Jiaen Hu Zishi Cheng Xinqi Hao . 基础有机化学教学中烯烃的氧化反应. University Chemistry, 2025, 40(6): 139-144. doi: 10.12461/PKU.DXHX202408107

    5. [5]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    6. [6]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    7. [7]

      Xiaofei LiuHe WangLi TaoWeimin RenXiaobing LuWenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008

    8. [8]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    9. [9]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    10. [10]

      Honghong ZhangZhen WeiDerek HaoLin JingYuxi LiuHongxing DaiWeiqin WeiJiguang Deng . 非均相催化CO2与烃类协同催化转化的最新进展. Acta Physico-Chimica Sinica, 2025, 41(7): 100073-0. doi: 10.1016/j.actphy.2025.100073

    11. [11]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    12. [12]

      Weihan ZhangMenglu WangAnkang JiaWei DengShuxing Bai . Surface Sulfur Species Influence Hydrogenation Performance of Palladium-Sulfur Nanosheets. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-0. doi: 10.3866/PKU.WHXB202309043

    13. [13]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    14. [14]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    15. [15]

      Zixuan Zhao Miao Fan . “Carbon” with No “Ester”: A Boundless Journey of CO2 Transformation. University Chemistry, 2025, 40(7): 213-217. doi: 10.12461/PKU.DXHX202409040

    16. [16]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    17. [17]

      Jianan HongChenyu XuYan LiuChangqi LiMenglin WangYanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099

    18. [18]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    19. [19]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    20. [20]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

Metrics
  • PDF Downloads(133)
  • Abstract views(4675)
  • HTML views(1391)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return