Citation: Wang Menghan, Wan Li, Gao Xuyu, Yuan Wenbo, Fang Junfeng, Tao Youtian, Huang Wei. Synthesis of D-π-A-π-D Type Dopant-Free Hole Transporting Materials and Application in Inverted Perovskite Solar Cells[J]. Acta Chimica Sinica, ;2019, 77(8): 741-750. doi: 10.6023/A19060200 shu

Synthesis of D-π-A-π-D Type Dopant-Free Hole Transporting Materials and Application in Inverted Perovskite Solar Cells

  • Corresponding author: Fang Junfeng, fangjf@nimte.ac.cn Tao Youtian, iamyttao@njtech.edu.cn
  • These authors contributed equally to this work
  • Received Date: 6 June 2019
    Available Online: 28 August 2019

    Fund Project: Project supported by the National Key Research and Development Program of China for the Joint Research Program between China and European Union (No.2016YFE0112000), National Natural Science Foundation of China (No. 61761136013), and the Natural Science Foundation of Jiangsu Province (No.BK20160042)the Natural Science Foundation of Jiangsu Province BK20160042National Natural Science Foundation of China 61761136013the National Key Research and Development Program of China for the Joint Research Program between China and European Union 2016YFE0112000

Figures(9)

  • Perovskite solar cells (PVSCs) have recently gained much attention for the advantages of low cost and high efficiency. Based on the different device structures, PVSCs can be simply classified into conventional and inverted categories. Compared with the inverted devices, conventional PVSCs generally exhibited higher PCE. Especially, a milestone PCE value of 24.3% was obtained in conventional PVSCs. However, the complexity and high-temperature process in device fabrication further limit their application in flexible and large-scale devices, while the inverted PVSCs can make up the shortcomings of the conventional PVSCs. Commonly, PVSCs devices contain electrodes, electron/hole transporting layers and the perovskite layer. Among the function layers, hole transporting layers (HTLs) play a crucial role in improving the photovoltaic performance of inverted PVSCs. From the materials point of view, the efficient hole transporting materials (HTMs) are mostly inorganic compounds and polymers. On the other side, taking advantages of easy modification, low price, easy preparation and homogeneity in batches, small molecular HTMs afford superior promising in fabricating efficient and stable PVSCs. However, up to date, small molecular HTMs are relatively less explored. To enrich the material species of small molecular HTMs and illustrate their superiorities in constructing stable PVSCs, in this paper, we designed and synthesized three D-π-A-π-D type small molecular HTMs based on triphenylamine (TPA) unit, namely 1-T, 1-OT and 1-OTCN. The optoelectronic properties of these molecules were modified by introducing different electron acceptor/donor groups. Afterwards, employing as dopant-free HTMs in inverted PVSCs, the three small molecules demonstrated distinguished performance. We found that introduction of electron-donating methoxy into 1-T, 1-OT exhibited increased energy levels and hole mobility. On the other hand, the energy levels of 1-OTCN were down-shifted compared to 1-OT, which was attributed from the stronger electron-withdrawing ability of dicyanovinylene group than carbonyl group. Among the devices with new HTMs, 1-OTCN based PVSCs achieved the best PCE of 16.8%, with open-circuit voltage (VOC) of 1.09 V, short-circuit current density (JSC) of 20.13 mA·cm-2 and fill factor (FF) of 78%. Compared with other HTMs, the higher JSC of 1-OTCN based PVSCs was ascribed from more efficient charge transfer and extraction in the interface of HTL/perovskite. Moreover, in contrast with the hydrophilicity of PEDOT:PSS, the hydrophobicity of 1-OTCN contributed to the satisfactory stability of PVSCs.
  • 加载中
    1. [1]

      Chai, L.; Zhong, M. Acta Phys. Sin. 2016, 65, 237902(in Chinese).  doi: 10.7498/aps.65.237902

    2. [2]

      Pan, B.; Zhu, Y.-Z.; Qiu, C.-J.; Wang, B.; Zheng, J.-Y. Acta Chim. Sinica 2018, 76, 215(in Chinese).
       

    3. [3]

      Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. J. Am. Chem. Soc. 2009, 131, 6050.  doi: 10.1021/ja809598r

    4. [4]

      https://www.nrel.gov/pv/assets/images/efficiency-chart.png.

    5. [5]

      Zhao, C.; Ma, Y.; Wang, Y.; Zhu, X.; Li, H.-Z.; Li, M.-Z.; Song, Y.-L. Acta Chim. Sinica 2018, 76, 9(in Chinese).  doi: 10.3866/PKU.WHXB201707072
       

    6. [6]

      Chen, X.-Y.; Xie, J.-J.; Wang, W.; Yuan, H.-H.; Xu, D.; Zhang, T.; He, Y.-L. Shen, H.-J. Acta Chim. Sinica 2019, 77, 9(in Chinese).  doi: 10.3866/PKU.WHXB201711141
       

    7. [7]

      Li, C.-P.; Lv, X.-D.; Cao, J.; Tang, Y. Chin. J. Chem. 2019, 37, 30.  doi: 10.1002/cjoc.201800469

    8. [8]

      Wang, Y.-L.; Chang, S.; Chen, X.-M.; Ren, Y.-D.; Shi, L.-F.; Liu, Y.-H.; Zhong, H.-Z. Chin. J. Chem. 2019, 37, 616.  doi: 10.1002/cjoc.201900071

    9. [9]

      Etgar, L.; Gao, P.; Xue, Z.; Peng, Q.; Chandiran, A. Q.; Liu, B.; Nazeeruddin, M. K.; Grätzel, M. J. Am. Chem. Soc. 2012, 134, 17396.  doi: 10.1021/ja307789s

    10. [10]

      Liu, M.; Johnston, M. B.; Snaith, H. J. Nature 2013, 501, 395.  doi: 10.1038/nature12509

    11. [11]

      Gao, P.; Grätzel, M.; Nazeeruddin, M. K. Energy Environ. Sci. 2014, 7, 2448.  doi: 10.1039/C4EE00942H

    12. [12]

      Green, M. A.; Ho-Baillie, A.; Snaith, H. J. Nature Photon. 2014, 8, 506.  doi: 10.1038/nphoton.2014.134

    13. [13]

      Liu, X.-D.; Li, Y.-F. J. Electrochem. 2016, 22, 315.

    14. [14]

      Urieta-Mora, J.; García-Benito, I.; Molina-Ontoria, A.; Martín, N. Chem. Soc. Rev. 2018, 47, 8541.  doi: 10.1039/C8CS00262B

    15. [15]

      Niu, G.-D.; Guo, X.-D.; Wang, L.-D. J. Mater. Chem. A 2015, 3, 8970.  doi: 10.1039/C4TA04994B

    16. [16]

      Hawash, Z.; Ono, L. K.; Raga, S. R.; Lee, M. V.; Qi, Y.-B. Chem. Mater. 2015, 27, 562.  doi: 10.1021/cm504022q

    17. [17]

      Leijtens, T.; Giovenzana, T.; Habisreutinger, S. N.; Tinkham, J. S.; Noel, N. K.; Kamino, B. A.; Sadoughi, G.; Sellinger, A.; Snaith, H. J. ACS Appl. Mater. Interfaces 2016, 8, 5981.  doi: 10.1021/acsami.5b10093

    18. [18]

      Zhang, L.-Z.; Zhou, X.-Y.; Zhong, X.-W.; Cheng, C.; Tian, Y.-Q.; Xu, B.-M. Nano Energy 2019, 57, 248.  doi: 10.1016/j.nanoen.2018.12.033

    19. [19]

      Li, X.-D.; Wang, Y.-C.; Zhu, L.-P.; Zhang, W.-J.; Wang, H.-Q.; Fang, J.-F. ACS Appl. Mater. Interfaces 2017, 9, 31357.  doi: 10.1021/acsami.7b11977

    20. [20]

      Sun, W.-H.; Li, Y.-L.; Yan, W.-B.; Peng, H.-T.; Ye, S.-Y.; Rao, H.-X.; Zhao, Z.-R. Liu, Z.-W. Bian, Z.-Q. Huang, C.-H. Chin. J. Chem. 2017, 35, 687.  doi: 10.1002/cjoc.201600704

    21. [21]

      Zhang, Z, -G.; Yang, Y.-K.; Yao, J.; Xue, L.-W.; Chen, S.-S.; Li, X.-J.; Morrison, W.; Yang, C.; Li, Y.-F. Angew. Chem., Int. Ed. 2017, 129, 13688.  doi: 10.1002/ange.201707678

    22. [22]

      Yan, W.-B.; Ye, S.-Y.; Li, Y.-L.; Sun, W.-H.; Rao, H.-X.; Liu, Z.-W.; Bian, Z.-Q.; Huang, C.-H. Adv. Energy Mater. 2016, 6, 1600474.  doi: 10.1002/aenm.201600474

    23. [23]

      Kim, Y. H.; Sachse, C.; Machala, M. L.; May, C.; Müller-Meskamp, L.; Leo, K. Adv. Funct. Mater. 2011, 21, 1076.  doi: 10.1002/adfm.201002290

    24. [24]

      Jeng, J.-Y.; Chen, K.-C.; Chiang, T.-Y.; Lin, P.-Y.; Tsai, T.-D.; Chang, Y.-C.; Guo, T.-F.; Chen, P.; Wen, T.-C.; Hsu, Y.-J. Adv. Mater. 2014, 26, 4107.  doi: 10.1002/adma.201306217

    25. [25]

      Kim, J. H.; Liang, P.-W.; Williams, S. T.; Cho, N.; Chueh, C.-C.; Glaz, M. S.; Ginger, D. S.; Jen, A. K. Y. Adv. Mater. 2015, 27, 695.  doi: 10.1002/adma.201404189

    26. [26]

      Lim, K.-G.; Kim, H.-B.; Jeong, J.; Kim, H.; Kim, J. Y.; Lee, T.-W. Adv. Mater. 2014, 26, 6461.  doi: 10.1002/adma.201401775

    27. [27]

      Girotto, C.; Moia, D.; Rand, B. P.; Heremans, P. Adv. Funct. Mater. 2011, 21, 64.  doi: 10.1002/adfm.201001562

    28. [28]

      Hou, F.-H.; Su, Z.-S.; Jin, F.-M.; Yan, X.-W.; Wang, L.-D.; Zhao, H.-F.; Zhu, J.-Z.; Chu, B.; Li, W.-L. Nanoscale 2015, 7, 9427.  doi: 10.1039/C5NR01864A

    29. [29]

      Nie, W.-Y.; Tsai, H.; Asadpour, R.; Blancon, J.; Neukirch, A. J.; Gupta1, G.; Crochet, J. J.; Chhowalla, M.; Tretiak, S.; Alam, M. A.; Wang, H.; Mohite, A. D. Science 2015, 347, 522.  doi: 10.1126/science.aaa0472

    30. [30]

      Zhou, H.-P.; Chen, Q.; Li, G.; Luo, S.; Song, T.; Duan, H.; Hong, Z.-R.; You, J.-B.; Liu, Y.-S.; Yang, Y. Science 2014, 345, 542.  doi: 10.1126/science.1254050

    31. [31]

      Li, Y.; Xu, Z.; Zhao, S.-L.; Qiao, B.; Huang, D.; Zhao, L.; Zhao, J.; Wang, P.; Zhu, Y.-Q.; Li, X.-G.; Liu, X.-C.; Xu, X.-R. Small 2016, 12, 4902.  doi: 10.1002/smll.201601603

    32. [32]

      Yang, L.-Y.; Cai, F.-L.; Yan, Y.; Li, J.-H.; Liu, D.; Pearson, A. J.; Wang, T. Adv. Funct. Mater. 2017, 27, 1702613.  doi: 10.1002/adfm.201702613

    33. [33]

      Huang, C.-Y.; Fu, W.-F.; Li, C.-Z.; Zhang, Z.-Q.; Qiu, W.-M.; Shi, M.-M.; Heremans, P.; Jen, A. K.-Y.; Chen, H.-Z. J. Am. Chem. Soc. 2016, 138, 2528.  doi: 10.1021/jacs.6b00039

    34. [34]

      Xue, R.-M.; Zhang, M.-Y.; Xu, G.-Y.; Zhang, J.-W.; Chen, W.-J.; Chen, H.-Y.; Yang, M.; Cui, C.-H.; Li, Y.-W.; Li, Y.-F. J. Mater. Chem. A 2018, 6, 404.  doi: 10.1039/C7TA09716F

    35. [35]

      Wang, J.-Y.; Liu, K.; Ma, L.-C.; Zhan, X.-W. Chem. Rev. 2016, 116, 14675.  doi: 10.1021/acs.chemrev.6b00432

    36. [36]

      Song, Z.-H.; Wang, S.-R.; Xiao, Y.; Li, X.-G. Acta Phys. Sin. 2015, 64, 033301(in Chinese).  doi: 10.7498/aps.64.033301

    37. [37]

      Zhang, H.; Wu, Y.-Z.; Zhang, W.-W.; Li, E.-P.; Shen, C.; Jiang, H.-Y.; Tian, H.; Zhu, W.-H. Chem. Sci. 2018, 9, 5919.  doi: 10.1039/C8SC00731D

    38. [38]

      Shen, C.; Wu, Y.-Z.; Zhang, H.; Li, E.-P.; Zhang, W.-W.; Xu, X.-J.; Wu, W.-J.; He, T.; Zhu, W.-H. Angew. Chem. Int. Ed. 2019, 58, 3784.  doi: 10.1002/anie.201811593

    39. [39]

      Urieta-Mora, J.; García-Benito, I.; Molina-Ontoria, A.; Martín, N. Chem. Soc. Rev. 2018, 47, 8541.  doi: 10.1039/C8CS00262B

    40. [40]

      Li, H.-R.; Fu, K.-W.; Hagfeldt, A.; Grätzel, M.; Mhaisalkar, S. G.; Grimsdale, A. C. Angew. Chem. Int. Ed. 2014, 53, 4169.

    41. [41]

      Yang, D.; Sano, T.; Yaguchi, Y.; Sun, H.; Sasabe, H.; Kido, J. Adv. Funct. Mater. 2018, 29, 1807556.

    42. [42]

      Bi, C.; Wang, Q.; Shao, Y.-C.; Yuan, Y.-B.; Xiao, Z.-G.; Huang, J.-S. Nat. Commun. 2015, 6, 7747.  doi: 10.1038/ncomms8747

    43. [43]

      Yu, H.-Z. Acta Phys. Sin. 2012, 61, 087204(in Chinese).  doi: 10.7498/aps.61.087204

    44. [44]

      Davey, M. H.; Lee, V. Y.; Miller, R. D.; Marks, T. J. J. Org. Chem. 1999, 64, 4976.  doi: 10.1021/jo990235x

  • 加载中
    1. [1]

      Yameen AhmedXiangxiang FengYuanji GaoYang DingCaoyu LongMustafa HaiderHengyue LiZhuan LiShicheng HuangMakhsud I. SaidaminovJunliang Yang . Interface Modification by Ionic Liquid for Efficient and Stable FAPbI3 Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(6): 2303057-0. doi: 10.3866/PKU.WHXB202303057

    2. [2]

      Mingxuan QiLanyu JinHonghe YaoZipeng XuTeng ChengQi ChenCheng ZhuYang Bai . Recent progress on electrical failure and stability of perovskite solar cells under reverse bias. Acta Physico-Chimica Sinica, 2025, 41(8): 100088-0. doi: 10.1016/j.actphy.2025.100088

    3. [3]

      Pengyu DongYue JiangZhengchi YangLicheng LiuGu LiXinyang WenZhen WangXinbo ShiGuofu ZhouJun-Ming LiuJinwei Gao . NbSe2 Nanosheets Improved the Buried Interface for Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-0. doi: 10.3866/PKU.WHXB202407025

    4. [4]

      Yawen GuoDawei LiYang GaoCuihong Li . Recent Progress on Stability of Organic Solar Cells Based on Non-Fullerene Acceptors. Acta Physico-Chimica Sinica, 2024, 40(6): 2306050-0. doi: 10.3866/PKU.WHXB202306050

    5. [5]

      Shitao Fu Jianming Zhang Cancan Cao Zhihui Wang Chaoran Qin Jian Zhang Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059

    6. [6]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    7. [7]

      Wang WangYucheng LiuShengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059

    8. [8]

      Meng-Yin WangRuo-Bei HuangJian-Feng XiongJing-Hua TianJian-Feng LiZhong-Qun Tian . Critical Role and Recent Development of Separator in Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2307017-0. doi: 10.3866/PKU.WHXB202307017

    9. [9]

      Xuechen HuQiuying XiaFan YueXinyi HeZhenghao MeiJinshi WangHui XiaXiaodong Huang . Electrochemical Characteristics of LiNbO3 Anode Film and Its Applications in All-Solid-State Thin-Film Lithium-Ion Battery. Acta Physico-Chimica Sinica, 2024, 40(2): 2309046-0. doi: 10.3866/PKU.WHXB202309046

    10. [10]

      Yihan XueXue HanJie ZhangXiaoru Wen . NCQDs修饰FeOOH基复合材料的制备及其电容脱盐性能. Acta Physico-Chimica Sinica, 2025, 41(7): 100072-0. doi: 10.1016/j.actphy.2025.100072

    11. [11]

      Yuting DUJing YUANPeiyao DENG . Synthesis and application of a fluorescent probe for the detection of reduced glutathione. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1331-1337. doi: 10.11862/CJIC.20240461

    12. [12]

      Hailian TangSiyuan ChenQiaoyun LiuGuoyi BaiBotao QiaoLiu Fei . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 2408004-0. doi: 10.3866/PKU.WHXB202408004

    13. [13]

      Ying LiangYuheng DengShilv YuJiahao ChengJiawei SongJun YaoYichen YangWanlei ZhangWenjing ZhouXin ZhangWenjian ShenGuijie LiangBin LiYong PengRun HuWangnan Li . Machine learning-guided antireflection coatings architectures and interface modification for synergistically optimizing efficient and stable perovskite solar cells. Acta Physico-Chimica Sinica, 2025, 41(9): 100098-0. doi: 10.1016/j.actphy.2025.100098

    14. [14]

      Bo YANGGongxuan LÜJiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063

    15. [15]

      Ruonan LiShijie LiangYunhua XuCuifen ZhangZheng TangBaiqiao LiuWeiwei Li . Chlorine-Substituted Double-Cable Conjugated Polymers with Near-Infrared Absorption for Low Energy Loss Single-Component Organic Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(8): 2307037-0. doi: 10.3866/PKU.WHXB202307037

    16. [16]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    17. [17]

      Nengmin ZHUWenhao ZHUXiaoyao YINSongzhi ZHENGHao LIZeyuan WANGWenhao WEIXuanheng CHENWeihai SUN . Preparation of high-performance CsPbBr3 perovskite solar cells by the aqueous solution solvent method. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1131-1140. doi: 10.11862/CJIC.20240419

    18. [18]

      Zeyi Yan Ruitao Liu Xinyu Qi Yuxiang Zhang Lulu Sun Xiangyuan Li Anchao Feng . Exploration of Suspension Polymerization: Preparation and Fluorescence Stability of Perovskite Polystyrene Microbeads. University Chemistry, 2025, 40(4): 72-79. doi: 10.12461/PKU.DXHX202405110

    19. [19]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    20. [20]

      Xiaoyao YINWenhao ZHUPuyao SHIZongsheng LIYichao WANGNengmin ZHUYang WANGWeihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309

Metrics
  • PDF Downloads(20)
  • Abstract views(1664)
  • HTML views(357)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return