Citation: Zheng Qiao-Feng, Ju Zhen, Liu Shu-Shen. Combined Toxicity of Dichlorvos and Its Metabolites to Vibrio qinghaiensis sp.-Q67 and Caenorhabditis elegans[J]. Acta Chimica Sinica, ;2019, 77(10): 1008-1016. doi: 10.6023/A19060197 shu

Combined Toxicity of Dichlorvos and Its Metabolites to Vibrio qinghaiensis sp.-Q67 and Caenorhabditis elegans

  • Corresponding author: Liu Shu-Shen, ssliuhl@263.net
  • Received Date: 3 June 2019
    Available Online: 13 October 2019

    Fund Project: the National Natural Science Foundation of China 21677113Project supported by the National Natural Science Foundation of China (Nos. 21437004, 21677113) and the Fundamental Research Funds for the Central Universities (No. 22120180246)the National Natural Science Foundation of China 21437004the Fundamental Research Funds for the Central Universities 22120180246

Figures(5)

  • Pesticides and their metabolites often coexist in the real environment. The combined toxicity (synergism or antagonism) between pesticide and metabolites directly affects the environment risk assessment of pesticide. Dichlorvos (A) has three main metabolites, 2, 2-dichloroethanol (B), 2, 2-dichloroacetic acid (C) and dimethyl phosphate (D), in water and soil environment. Under different environmental conditions, metabolites with various concentration compositions form a variety of mixtures with dichlorvos. In this paper, five mixture rays with different mixture ratios were selected by optimal experimental design method. A typical aquatic (Vibrio qinghaiensis sp. -Q67) and a soil organisms (Caenorhabditis elegans) were selected as the tested organisms. The photoluminescence inhibitory toxicity (IT) of parent A and its metabolites B, C and D as well as their mixtures to Q67 and the lethal toxicity (LT) to C. elegans at different exposure time and concentration levels were determined by microplate toxicity analysis. The combination index with 95% observation-based confidence intervals was used to evaluate the change of combined toxicity of each mixture ray under different exposure times and the concentration levels. The results showed that the ITs of parent A and two metabolites C and D to Q67 do not change with the exposure time, but the IT of metabolite B at 12 h is significantly larger than that at 0.25 h. However, at two exposure times, the IT of parent A is greater than that of any of metabolites. The LTs of A and B, C and D to C. elegans do not change with the exposure time. The LTs of A, C and D to C. elegans are basically the same and significantly greater than that of B. The ITs of five mixture rays to Q67 at 12 h are significantly greater than those at 0.25 h at various concentration levels. The combined toxicities of the mixture rays to Q67 are concentration additive at low concentration levels and antagonistic at high concentration levels whether at 0.25 h or 12 h. For C. elegans, the LTs of five mixture rays at various concentration levels do not basically change with the exposure time. At two exposure times (12 h and 24 h), the combined toxicities of mixture rays are concentration additive except for the slight antagonism in the rays of R2 and R5.
  • 加载中
    1. [1]

      Cruz-Alcalde, A.; Sans, C.; Esplugas, S. Sep. Purif. Technol. 2018, 192, 123.  doi: 10.1016/j.seppur.2017.09.069

    2. [2]

      Park, J. A.; Abd El-Aty, A. M.; Zheng, W.; Kim, S. K.; Cho, S. H.; Choi, J. M.; Hacimuftuo, A.; Jeong, J. H.; Wang, J.; Shim, J. H.; Shin, H. C. Food Chem. 2018, 252, 40.  doi: 10.1016/j.foodchem.2018.01.085

    3. [3]

      Yu, Y.; Hu, S.; Yang, Y.; Zhao, X.; Xue, J.; Zhang, J.; Gao, S.; Yang, A. BMC Public Health 2017, 18, 91.

    4. [4]

      Dirican, E. K.; Kalender, Y. Exp. Toxicol. Pathol. 2012, 64, 821.  doi: 10.1016/j.etp.2011.03.002

    5. [5]

      Oribhabor, B. J.; Ikeogu, G. C. Recent Pat. Biotechnol. 2016, 10, 272.  doi: 10.2174/1872208310666160725200722

    6. [6]

      Oncescu, T.; Oancea, P.; Enache, M.; Popescu, G.; Dumitru, L.; Kamekura, M. Cent. Eur. J. Biol. 2007, 2, 563.  doi: 10.2478/s11535-007-0037-7

    7. [7]

      Barrett, K.; Jaward, F. M. Int. J. Environ. Health Res. 2012, 22, 481.  doi: 10.1080/09603123.2012.667794

    8. [8]

      Boxall, A. B. A.; Sinclair, C. J.; Fenner, K.; Kolpin, D.; Maud, S. J. Environ. Sci. Technol. 2004, 38, 368A.  doi: 10.1021/es040624v

    9. [9]

      Benfeito, S.; Silva, T.; Garrido, J.; Andrade, P. B.; Sottomayor, M. J.; Borges, F.; Garrido, E. M. Biomed. Res. Int. 2014, no. 709036 (DOI: 10.1155/2014/709036).  doi: 10.1155/2014/709036)

    10. [10]

      Zhang, Q.; Ji, C.; Yan, L.; Lu, M.; Lu, C.; Zhao, M. Environ. Pollut. 2016, 218, 8.  doi: 10.1016/j.envpol.2016.08.026

    11. [11]

      Stancova, V.; Plhalova, L.; Bartoskova, M.; Zivna, D.; Prokes, M.; Marsalek, P.; Blahova, J.; Skoric, M.; Svobodova, Z. Biomed. Res. Int. 2014, no. 253468 (DOI: 10.1155/2014/253468).  doi: 10.1155/2014/253468)

    12. [12]

      Gatidou, G.; Thomaidis, N. S. Aquat. Toxicol. 2007, 85, 184.  doi: 10.1016/j.aquatox.2007.09.002

    13. [13]

      Liu, S. S.; Xiao, Q. F.; Zhang, J.; Yu, M. Sci. Bull. 2016, 61, 52.  doi: 10.1007/s11434-015-0925-6

    14. [14]

      Moser, V. C.; Simmons, J. E.; Gennings, C. Toxicol. Sci. 2006, 92, 235.  doi: 10.1093/toxsci/kfj189

    15. [15]

      Stork, L. G.; Gennings, C.; Carter, W. H., Jr.; Johnson, R. E.; Mays, D. P.; Simmons, J. E.; Wagner, E. D.; Plewa, M. J. J. Agric. Biol. Environ. Stat. 2007, 12, 514.  doi: 10.1198/108571107X249816

    16. [16]

      Fang, K. T.; Lin, D. K. J.; Winker, P.; Zhang, Y. Technometrics 2000, 42, 237.  doi: 10.1080/00401706.2000.10486045

    17. [17]

      Chou, T. C. Pharmacol. Rev. 2006, 58, 621.  doi: 10.1124/pr.58.3.10

    18. [18]

      Li, K.; Liu, S. S.; Qu, R. Asian J. Ecotoxicol. 2017, 12, 62 (in Chinese).  doi: 10.7524/AJE.1673-5897.20160712001

    19. [19]

      Feng, L.; Liu, S. S.; Li, K.; Tang, H. X.; Liu, H. L. J. Hazard. Mater. 2017, 327, 11.  doi: 10.1016/j.jhazmat.2016.12.031

    20. [20]

      Tang, H. X.; Liu, S. S.; Li, K.; Feng, L. Anal. Methods 2016, 8, 4466.  doi: 10.1039/C6AY00582A

    21. [21]

      Liu, L.; Liu, S. S.; Yu, M.; Chen, F. Environ. Toxicol. Pharmacol. 2015, 39, 447.  doi: 10.1016/j.etap.2014.12.013

    22. [22]

      Chen, Y. H.; Qin, L. T.; Mo, L. Y.; Zhao, D. N.; Zeng, H. H.; Liang, Y. P. Environ. Pollut. 2019, 250, 375.  doi: 10.1016/j.envpol.2019.04.009

    23. [23]

      Girotti, S.; Ferri, E. N.; Fumo, M. G.; Maiolini, E. Anal. Chim. Acta 2008, 608, 2.  doi: 10.1016/j.aca.2007.12.008

    24. [24]

      Wu, S.; Zhang, X.; Yang, P.; Li, L.; Tang, S. Int. J. Food Sci. Technol. 2018, 53, 2141.  doi: 10.1111/ijfs.13801

    25. [25]

      Jian, Q.; Gong, L.; Li, T.; Wang, Y.; Wu, Y.; Chen, F.; Qu, H.; Duan, X.; Jiang, Y. Toxins (Basel) 2017, 9, 335.  doi: 10.3390/toxins9100335

    26. [26]

      Thomulka, K. W.; McGee, D. J.; Lange, J. H. Bull. Environ. Contam. Toxicol. 1993, 51, 538.  doi: 10.1007/BF00192169

    27. [27]

      Gong, L.; Wu, Y.; Jian, Q.; Yin, C.; Li, T.; Gupta, V. K.; Duan, X.; Jiang, Y. Sci. Data 2018, 5, 170105.

    28. [28]

      Ding, K.; Lu, L.; Wang, J.; Wang, J.; Zhou, M.; Zheng, C.; Liu, J.; Zhang, C.; Zhuang, S. Sci. Total Environ. 2017, 580, 1078.  doi: 10.1016/j.scitotenv.2016.12.062

    29. [29]

      Fan, Y.; Liu, S. S.; Qu, R.; Li, K.; Liu, H. L. RSC Adv. 2017, 7, 6080.  doi: 10.1039/C6RA25843C

    30. [30]

      Zhang, J.; Ding, T. T.; Dong, X. Q.; Bian, Z. Q. RSC Adv. 2018, 8, 26089.  doi: 10.1039/C8RA04191A

    31. [31]

      Mo, L. Y.; Liu, J.; Qin, L. T.; Zeng, H. H.; Liang, Y. P. Bull. Environ. Contam. Toxicol. 2017, 99, 17.  doi: 10.1007/s00128-017-2099-1

    32. [32]

      Xu, Y. Q.; Liu, S. S.; Wang, Z. J.; Li, K.; Qu, R. Ecotoxicol. Environ. Saf. 2018, 162, 304.  doi: 10.1016/j.ecoenv.2018.07.007

    33. [33]

      Zhou, D.; Yang, J.; Li, H.; Cui, C.; Yu, Y.; Liu, Y.; Lin, K. Chemosphere 2016, 154, 546.  doi: 10.1016/j.chemosphere.2016.04.011

    34. [34]

      Jager, T.; Gudmundsdottir, E. M.; Cedergreen, N. Environ. Sci. Technol. 2014, 48, 7026.  doi: 10.1021/es501306t

    35. [35]

      Cole, R. D.; Anderson, G. L.; Williams, P. L. Toxicol. Appl. Pharmacol. 2004, 194, 248.  doi: 10.1016/j.taap.2003.09.013

    36. [36]

      Yu, Z.; Yin, D.; Deng, H. Ecotoxicol. Environ. Saf. 2015, 111, 66.  doi: 10.1016/j.ecoenv.2014.09.026

    37. [37]

      Sochova, I.; Hofman, J.; Holoubek, I. Environ. Int. 2007, 33, 798.  doi: 10.1016/j.envint.2007.03.001

    38. [38]

      Varo, I.; Perini, A.; Torreblanca, A.; Garcia, Y.; Bergami, E.; Vannuccini, M. L.; Corsi, I. Sci. Total Environ. 2019, 675, 570.  doi: 10.1016/j.scitotenv.2019.04.157

    39. [39]

      Li, T.; Liu, S. S.; Qu, R.; Liu, H. L. Ecotoxicol. Environ. Saf. 2017, 144, 475.  doi: 10.1016/j.ecoenv.2017.06.044

    40. [40]

      Yu, Z. Y.; Mo, L. Y.; Zhang, J.; Liu, S. S. Chemosphere 2016, 163, 452.  doi: 10.1016/j.chemosphere.2016.08.061

    41. [41]

      Li, K.; Xu, Y. Q.; Feng, L.; Liu, S. S. Environ. Pollut. 2018, 242, 872.  doi: 10.1016/j.envpol.2018.06.107

    42. [42]

      Zhang, J.; Wang, J. C.; Liu, S. S.; Ge, H. L.; Liu, H. L. Asian J. Ecotoxicol. 2009, 4, 353 (in Chinese).
       

    43. [43]

      Zhang, J.; Liu, S. S. Asian J. Ecotoxicol. 2012, 7, 408 (in Chinese).
       

    44. [44]

      Zhang, J.; Liu, S. S.; Zhu, X. W. Chemosphere 2014, 112, 420.  doi: 10.1016/j.chemosphere.2014.05.007

    45. [45]

      Evgenidou, E.; Konstantinou, I.; Fytianos, K.; Albanis, T. J. Hazard. Mater. 2006, 137, 1056.  doi: 10.1016/j.jhazmat.2006.03.042

    46. [46]

      Xu, Y. Q.; Liu, S. S.; Fan, Y.; Li, K. Sci. Total Environ. 2018, 635, 432.  doi: 10.1016/j.scitotenv.2018.04.023

    47. [47]

      Zhang, J.; Liu, S. S.; Yu, Z. Y.; Zhang, J. Chemosphere 2013, 91, 462.  doi: 10.1016/j.chemosphere.2012.11.070

    48. [48]

      Zhu, X. W.; Liu, S. S.; Ge, H. L.; Liu, Y. Water Res. 2009, 43, 1731.  doi: 10.1016/j.watres.2009.01.004

    49. [49]

      Wang, M. C.; Liu, S. S.; Chen, F. Acta Chim. Sinica 2014, 72, 56 (in Chinese).
       

    50. [50]

      Zhu, X. W.; Liu, S. S.; Ge, H. L.; Liu, Y. China Environ. Sci. 2009, 29, 113 (in Chinese).  doi: 10.3321/j.issn:1000-6923.2009.02.001

    51. [51]

      Zhu, X. W.; Liu, S. S.; Qin, L. T.; Chen, F.; Liu, H. L. Ecotoxicol. Environ. Saf. 2013, 89, 130.  doi: 10.1016/j.ecoenv.2012.11.022

    52. [52]

      Liu, S. S.; Zhang, J.; Zhang, Y. H.; Qin, L. T. Acta Chim. Sinica 2012, 70, 1511 (in Chinese).  doi: 10.3969/j.issn.0251-0790.2012.07.027
       

    53. [53]

      Zhang, Y. H.; Liu, S. S.; Liu, H. L.; Liu, Z. Z. Pest Manag. Sci. 2010, 66, 879.  doi: 10.1002/ps.1957

  • 加载中
    1. [1]

      Shahua Huang Xiaoming Guo Lin Lin Guangping Chang Sheng Han Zuxin Zhou . Application of “Integration of Industry and Education” in Engineering Chemistry: Improvement of the Pesticide Fipronil Production. University Chemistry, 2024, 39(3): 199-204. doi: 10.3866/PKU.DXHX202309064

    2. [2]

      Qilong Fang Yiqi Li Jiangyihui Sheng Quan Yuan Jie Tan . Magical Pesticide Residue Detection Test Strips: Aptamer-based Lateral Flow Test Strips for Organophosphorus Pesticide Detection. University Chemistry, 2024, 39(5): 80-89. doi: 10.3866/PKU.DXHX202310004

    3. [3]

      Cunling Ye Xitong Zhao Hongfang Wang Zhike Wang . A Formula for the Calculation of Complex Concentrations Arising from Side Reactions and Its Applications. University Chemistry, 2024, 39(4): 382-386. doi: 10.3866/PKU.DXHX202310043

    4. [4]

      Xuan Zhou Yi Fan Zhuoqi Jiang Zhipeng Li Guowen Yuan Laiying Zhang Xu Hou . Liquid Gating Mechanism and Basic Properties Characterization: a New Experimental Design for Interface and Surface Properties in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 113-120. doi: 10.12461/PKU.DXHX202407111

    5. [5]

      Lijun Dong Pengcheng Du Guangnong Lu Wei Wang . Exploration and Practice of Independent Design Experiments in Inorganic and Analytical Chemistry: A Case Study of “Preparation and Composition Analysis of Tetraammine Copper(II) Sulfate”. University Chemistry, 2024, 39(4): 361-366. doi: 10.3866/PKU.DXHX202310041

    6. [6]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    7. [7]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    8. [8]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    9. [9]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

    10. [10]

      Yang Chen Xiuying Wang Nengqin Jia . Ideological and Political Design, Blended Teaching Practice of Physical Chemistry Experiment: Pb-Sn Binary Metal Phase Diagram. University Chemistry, 2025, 40(3): 223-229. doi: 10.12461/PKU.DXHX202405184

    11. [11]

      Hui Shi Shuangyan Huan Yuzhi Wang . Ideological and Political Design of Potassium Permanganate Oxidation-Reduction Titration Experiment. University Chemistry, 2024, 39(2): 175-180. doi: 10.3866/PKU.DXHX202308042

    12. [12]

      Wei Peng Baoying Wen Huamin Li Yiru Wang Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062

    13. [13]

      Dongju Zhang . Exploring the Descriptions and Connotations of Basic Concepts of Teaching Crystal Structures. University Chemistry, 2024, 39(3): 18-22. doi: 10.3866/PKU.DXHX202304003

    14. [14]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    15. [15]

      Ruilin Han Xiaoqi Yan . Comparison of Multiple Function Methods for Fitting Surface Tension and Concentration Curves. University Chemistry, 2024, 39(7): 381-385. doi: 10.3866/PKU.DXHX202311023

    16. [16]

      Hao Ren Wen Zhao Fangna Dai Wenyue Guo . Finite Difference Solution of One-Dimensional Quantum Systems: (1) Fundamental Concepts and Infinite Square Well. University Chemistry, 2025, 40(3): 124-131. doi: 10.12461/PKU.DXHX202405145

    17. [17]

      Wei Li Ze Chang Meihui Yu Ying Zhang . Curriculum Ideological and Political Design of Piezoelectricity Measurement Experiments of Coordination Compounds. University Chemistry, 2024, 39(2): 77-82. doi: 10.3866/PKU.DXHX202308004

    18. [18]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    19. [19]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    20. [20]

      Jinfeng Chu Yicheng Wang Ji Qi Yulin Liu Yan Li Lan Jin Lei He Yufei Song . Comprehensive Chemical Experiment Design: Convenient Preparation and Characterization of an Oxygen-Bridged Trinuclear Iron(III) Complex. University Chemistry, 2024, 39(7): 299-306. doi: 10.3866/PKU.DXHX202310105

Metrics
  • PDF Downloads(7)
  • Abstract views(1469)
  • HTML views(171)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return