Citation: Zhang Hong-Hao, Yu Shouyun. Advances on Transition Metals and Photoredox Cooperatively Catalyzed Allylic Substitutions[J]. Acta Chimica Sinica, ;2019, 77(9): 832-840. doi: 10.6023/A19050177 shu

Advances on Transition Metals and Photoredox Cooperatively Catalyzed Allylic Substitutions

  • Corresponding author: Yu Shouyun, yushouyun@nju.edu.cn
  • Received Date: 14 May 2019
    Available Online: 16 September 2019

    Fund Project: Project supported by the National Natural Science Foundation of China (No. 21732003)the National Natural Science Foundation of China 21732003

Figures(13)

  • Allylic substitutions catalyzed by transition metals are important and practical reactions, which can construct carbon-carbon bonds and carbon-heteroatom bonds efficiently and stereoselectively. Various transition metal catalysts, such as Pd, Ir, Cu, Ni, Rh and Ru, have been widely used in this reaction. To date, various "soft", or stabilized nucleophiles (pKa < 25), including malonates, acetoacetates and enolates, have been used in allylic substitutions. Conversely, the high reactivity of "hard", or non-stabilized alkyl nucleophiles (pKa>25) has limited their utility in catalytic processes and their compatibility with functional groups. Visible light photoredox catalysis has been widely used in organic synthesis because it can generate high reactive intermediates, such as free radicals and radical ions, under mild conditions using green and clean energy, and has gradually developed into an important synthetic tool. Furthermore, merging photoredox catalysis with transition metal catalysts has become a popular strategy for expanding the synthetic utility of visible-light photocatalysis, and has led to the discovery of novel reaction modes. Due to the high activity of the intermediates in photoredox catalysis, the selectivity of these reactions, especially stereoselectivity, is still a challenge. In view of the importance of allyl substitutions, the allyl substitution co-catalyzed by transition metals and photoredox has attracted the interest of chemists. The synergistic strategy can realize allylic substitutions which are difficult to be achieved by single transition metal catalysis. The regioselectivity and stereoselectivity of these reactions also show different characteristics. It is expected to become an important complement to allylic substitution catalyzed by single metal. In this review, recent advances on allylic substitution co-catalyzed by different transition metals and photoredox are summarized. Meanwhile, the mechanism of representative transformations will be briefly introduced and the prospective in this area will be given.
  • 加载中
    1. [1]

      (a) Tsuji, J.; Takahashi, H.; Morikawa, M. Tetrahedron Lett. 1965, 6, 4387. (b) Tsuji, J. Acc. Chem. Res. 1969, 2, 144.

    2. [2]

      Trost, B. M.; Strege, P. E. J. Am. Chem. Soc. 1977, 99, 1649.  doi: 10.1021/ja00447a064

    3. [3]

      (a) Trost, B. M.; Van Vranken, D. L. Chem. Rev. 1996, 96, 395. (b) Trost, B. M.; Crawley, M. L. Chem. Rev. 2003, 103, 2921. (c) Trost, B. M.; Machacek, M. R.; Aponick, A. Acc. Chem. Res. 2006, 39, 747. (d) Trost, B. M. Org. Process Res. Dev. 2012, 16, 185.

    4. [4]

    5. [5]

    6. [6]

      (a) Alexakis, A.; Bäckvall, J. E.; Krause, N.; Pàmies, O.; Diéguez, M. Chem. Rev. 2008, 108, 2796. (b) Yorimitsu, H.; Oshima, K. Angew. Chem., Int. Ed. 2005, 44, 4435.

    7. [7]

      Zhang, H.; Gu, Q.; You, S.-L. Chin. J. Org. Chem. 2019, 39, 15(in Chinese).

    8. [8]

      (a) Turnbull, B. W. H.; Evans, P. A. J. Org. Chem. 2018, 83, 11463. (b) Thoke, M. B.; Kang, Q. Synthesis 2019, DOI: 10.1055/s-0037-1611784.

    9. [9]

      Bruneau, C.; Renaud, J.-L.; Demerseman, B. Chem. Eur. J. 2006, 12, 5178.  doi: 10.1002/chem.200600173

    10. [10]

    11. [11]

      For reviews on this topic, see: (a) Harutyunyan, S. R.; den Hartog, T.; Geurts, K.; Minnaard, A. J.; Feringa, B. L. Chem. Rev. 2008, 108, 2824. (b) Alexakis, A.; Backvall, J. E.; Krause, N.; Pàmies, O.; Diéguez, M. Chem. Rev. 2008, 108, 2796. (c) Teichert, J. F.; Ferin-ga, B. L. Angew. Chem., Int. Ed. 2010, 49, 2486. (d) Cherney, A. H.; Kadunce, N. T.; Reisman, S. E. Chem. Rev. 2015, 115, 9587. (e) Hartwig, J. F.; Pouy, M. J. Top. Organomet. Chem. 2011, 34, 169. (f) Schàfer, P.; Sidera, M.; Palacin, T.; Fletcher, S. P. Chem. Commun. 2017, 53, 12499.

    12. [12]

      (a) Zheng, W.-H.; Zheng, B.-H.; Zhang, Y.; Hou, X.-L. J. Am. Chem. Soc. 2007, 129, 7718. (b) Trost, B. M.; Thaisrivongs, D. A. J. Am. Chem. Soc. 2008, 130, 14092. (c) Trost, B. M.; Thaisrivongs, D. A. J. Am. Chem. Soc. 2009, 131, 12056. (d) Zhang, P.; Brozek, L. A.; Morken, J. P. J. Am. Chem. Soc. 2010, 132, 10686. (e) Chen, J.-P.; Ding, C.-H.; Liu, W.; Hou, X.-L.; Dai, L.-X. J. Am. Chem. Soc. 2010, 132, 15493. (f) Zhang, P.; Le, H.; Kyne, R. E.; Morken, J. P. J. Am. Chem. Soc. 2011, 133, 9716. (g) Trost, B. M.; Thaisrivongs, D. A.; Hartwig, J. J. Am. Chem. Soc. 2011, 133, 12439. (h) Chen, J.-P.; Peng, Q.; Lei, B.-L.; Hou, X.-L.; Wu, Y.-D. J. Am. Chem. Soc. 2011, 133, 14180. (i) Brozek, L. A.; Ardolino, M. J.; Morken, J. P. J. Am. Chem. Soc. 2011, 133, 16778. (j) Ardolino, M. J.; Morken, J. P. J. Am. Chem. Soc. 2014, 136, 7092. (k) Niyomchon, S.; Audisio, D.; Luparia, M.; Maulide, N. Org. Lett. 2013, 15, 2318. (l) Misale, A.; Niyomchon, S.; Luparia, M.; Maulide, N. Angew. Chem., Int. Ed. 2014, 53, 7068. (m) Mao, J.; Zhang, J.; Jiang, H.; Bellomo, A.; Zhang, M.; Gao, Z.; Dreher, S. D.; Walsh, P. J. Angew. Chem., Int. Ed. 2016, 55, 2526. (n) Murakami, R.; Sano, K.; Iwai, T.; Taniguchi, T.; Monde, K.; Sawamura, M. Angew. Chem., Int. Ed. 2018, 57, 9465.

    13. [13]

    14. [14]

    15. [15]

      For selected examples on palladium metallaphotoredox catalysis, see: (a) Kalyani, D.; McMurtrey, K. B.; Neufeldt, S. R.; Sanford, M. S. J. Am. Chem. Soc. 2011, 133, 18566. (b) Neufeldt, S. R.; Sanford, M. S. Adv. Synth. Catal. 2012, 354, 3517. (c) Zoller, J.; Fabry, D. C.; Ronge, M. A.; Rueping, M. Angew. Chem., Int. Ed. 2014, 53, 13264. (d) Mori, K.; Kawashima, M.; Yamashita, H. Chem. Commun. 2014, 50, 14501. (e) Choi, S.; Chatterjee, T.; Choi, W. J.; You, Y.; Cho, E. J. ACS Catal. 2015, 5, 4796. (f) Zhou, C.; Li, P.; Zhu, X.; Wang, L. Org. Lett. 2015, 17, 6198. (g) Cheng, W.-M.; Shang, R.; Yu, H.-Z.; Fu, Y. Chem. Eur. J. 2015, 21, 13191. (h) Liu, K.; Zou, M.; Lei, A. J. Org. Chem. 2016, 81, 7088. (i) Kärkäs, M. D.; Bosque, I.; Matsuura, B. S.; Stephenson, C. R. J. Org. Lett. 2016, 18, 5166. (j) Shimomaki, K.; Murata, K.; Martin, R.; Iwasawa, N. J. Am. Chem. Soc. 2017, 139, 9467. (k) Kato, S.; Saga, Y.; Kojima, M.; Fuse, H.; Matsunaga, S.; Fukatsu, A.; Kondo, M.; Masaoka, S.; Kanai, M. J. Am. Chem. Soc. 2017, 139, 2204.

    16. [16]

      For selected examples on nickel metallaphotoredox catalysis, see: (a) Zuo, Z.; Ahneman, D. T.; Chu, L.; Terrett, J. A.; MacMillan, D. W. C. Science 2014, 345, 437. (b) Tellis, J. C.; Primer, D. N.; Molander, G. A. Science 2014, 345, 433. (c) Corcé, V.; Chamoreau, L.-M.; Derat, E.; Goddard, J.-P.; Ollivier, C.; Fensterbank, L. Angew. Chem., Int. Ed. 2015, 54, 11414. (d) Nakajima, K.; Nojima, S.; Nishibayashi, Y. Angew. Chem., Int. Ed. 2016, 55, 14106. (e) Shaw, M. H.; Shurtleff, V. W.; Terrett, J. A.; Cuthbertson, J. D.; MacMillan, D. W. C. Science 2016, 352, 1304. (f) Heitz, D. R.; Tellis, J. C.; Molander, G. A. J. Am. Chem. Soc. 2016, 138, 12715.

    17. [17]

      For selected examples on copper metallaphotoredox catalysis, see: (a) Ye, Y.; Sanford, M. S. J. Am. Chem. Soc. 2012, 134, 9034. (b) Yoo, W.-J.; Tsukamoto, T.; Kobayashi, S. Angew. Chem., Int. Ed. 2015, 54, 6587.

    18. [18]

      For selected examples on gold metallaphotoredox catalysis, see: (a) Sahoo, B.; Hopkinson, M. N.; Glorius, F. J. Am. Chem. Soc. 2013, 135, 5505. (b) Shu, X.-Z.; Zhang, M.; He, Y.; Frei, H.; Toste, F. D. J. Am. Chem. Soc. 2014, 136, 5844.

    19. [19]

      (a) Skubi, K. L.; Blum, T. R.; Yoon, T. P. Chem. Rev. 2016, 116, 10035. (b) Tellis, J. C.; Kelly, C. B.; Primer, D. N.; Jouffroy, M.; Patel, N. R.; Molander, G. A. Acc. Chem. Res. 2016, 49, 1429. (c) Twilton, J.; Le, C.; Zhang, P.; Shaw, M. H.; Evans, R. W.; MacMillan, D. W. C. Nature Rev. 2017, 1, 0052. (d) Wang, C.-S.; Dixneuf, P. H.; Soulé, J.-F. Chem. Rev. 2018, 118, 7532. (e) Zhou, W.-J.; Zhang, Y.-H.; Gui, Y.-Y.; Sun, L.; Yu, D.-G. Synthesis 2018, 50, 3359. (f) Chuentragool, P.; Kurandina, D.; Gevorgyan, V. Angew. Chem., Int. Ed. 2019, DOI: 10.1002/anie.201813523.

    20. [20]

      Lang, S. B.; O'Nele, K. M.; Tunge, J. A. J. Am. Chem. Soc. 2014, 136, 13606.  doi: 10.1021/ja508317j

    21. [21]

      Lang, S. B.; O'Nele, K. M.; Tunge, J. A. Chem. Eur. J. 2015, 21, 18589.  doi: 10.1002/chem.201503644

    22. [22]

      Xuan, J.; Zeng, T.-T.; Feng, Z, -J.; Deng, Q.-H.; Chen, J.-R.; Lu, L.-Q.; Xiao, W.-J.; Alper, H. Angew. Chem., Int. Ed. 2015, 54, 1625.  doi: 10.1002/anie.201409999

    23. [23]

      Jennifer K. Matsui, J. K.; Gutiérrez-Bonet, A.; Rotella, M.; Alam, R.; Gutierrez, O.; Molander, G. A. Angew. Chem., Int. Ed. 2018, 57, 15847.  doi: 10.1002/anie.201809919

    24. [24]

      Thullen, S. M.; Rovis, T. J. Am. Chem. Soc. 2017, 139, 15504.  doi: 10.1021/jacs.7b09252

    25. [25]

      Zheng, J.; Breit, B. Angew. Chem., Int. Ed. 2019, 58, 3392.  doi: 10.1002/anie.201813646

    26. [26]

      Schwarz, J. L.; Schäfers, F.; Tlahuext-Aca, A.; Lückemeier, L.; Glorius, F. J. Am. Chem. Soc. 2018, 140, 12705.  doi: 10.1021/jacs.8b08052

    27. [27]

      For selected examples on asymmetric nickel metallaphotoredox catalysis, see: (a) Zuo, Z.; Cong, H.; Li, W.; Choi, J.; Fu, G. C.; MacMillan, D. W. C. J. Am. Chem. Soc. 2015, 138, 1832. (b) Stache, E. E.; Rovis, T.; Doyle, A. G. Angew. Chem., Int. Ed. 2017, 56, 3679. For selected examples on asymmetric copper metallaphotoredox catalysis, see: (c) Wang, D.; Zhu, N.; Chen, P.; Lin, Z.; Liu, G. J. Am. Chem. Soc. 2017, 139, 15632. (d) Sha, W.; Deng, L.; Ni, S.; Mei, H.; Han, J.; Pan, Y. ACS Catal. 2018, 8, 7489.

    28. [28]

      Zhang, H.-H.; Zhao, J.-J.; Yu, S. J. Am. Chem. Soc. 2018, 140, 16914.  doi: 10.1021/jacs.8b10766

    29. [29]

      Mitsunuma, H.; Tanabe, S.; Fuse, H.; Ohkubo, K.; Kanai, M. Chem. Sci. 2019, 10, 3459.  doi: 10.1039/C8SC05677C

  • 加载中
    1. [1]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    2. [2]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    3. [3]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    4. [4]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    5. [5]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    6. [6]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    7. [7]

      Lu ZhuoranLi ShengkaiLu YuxuanWang ShuangyinZou Yuqin . Cleavage of C―C Bonds for Biomass Upgrading on Transition Metal Electrocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2306003-0. doi: 10.3866/PKU.WHXB202306003

    8. [8]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    9. [9]

      Zhengyu ZhouHuiqin YaoYoulin WuTeng LiNoritatsu TsubakiZhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-0. doi: 10.3866/PKU.WHXB202312010

    10. [10]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    11. [11]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    12. [12]

      Yinjie XuSuiqin LiLihao LiuJiahui HeKai LiMengxin WangShuying ZhaoChun LiZhengbin ZhangXing ZhongJianguo Wang . Enhanced Electrocatalytic Oxidation of Sterols using the Synergistic Effect of NiFe-MOF and Aminoxyl Radicals. Acta Physico-Chimica Sinica, 2024, 40(3): 2305012-0. doi: 10.3866/PKU.WHXB202305012

    13. [13]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    14. [14]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    15. [15]

      Xudong LvTao ShaoJunyan LiuMeng YeShengwei Liu . Paired Electrochemical CO2 Reduction and HCHO Oxidation for the Cost-Effective Production of Value-Added Chemicals. Acta Physico-Chimica Sinica, 2024, 40(5): 2305028-0. doi: 10.3866/PKU.WHXB202305028

    16. [16]

      Honghong ZhangZhen WeiDerek HaoLin JingYuxi LiuHongxing DaiWeiqin WeiJiguang Deng . 非均相催化CO2与烃类协同催化转化的最新进展. Acta Physico-Chimica Sinica, 2025, 41(7): 100073-0. doi: 10.1016/j.actphy.2025.100073

    17. [17]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    18. [18]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    19. [19]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    20. [20]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

Metrics
  • PDF Downloads(76)
  • Abstract views(3548)
  • HTML views(969)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return