Citation: Cheng Jie, Wang Peilong, Su Xiaoou. Recent Progress on the Detection of Dioxins Based on Surface-enhanced Raman Spectroscopy[J]. Acta Chimica Sinica, ;2019, 77(10): 977-983. doi: 10.6023/A19040139 shu

Recent Progress on the Detection of Dioxins Based on Surface-enhanced Raman Spectroscopy

  • Corresponding author: Wang Peilong, wplcon99@163.com Su Xiaoou, suxiaoou@caas.cn
  • Received Date: 22 April 2019
    Available Online: 5 October 2019

    Fund Project: the Fundamental Research Funds for Central Non-profit Scientific Institution, Chinese Academy of Agricultural Sciences 1610072017006Project supported by the 13th five-year development plan of China by the National Key Research and Development Program (No. 2017YFC1600301) and the Fundamental Research Funds for Central Non-profit Scientific Institution, Chinese Academy of Agricultural Sciences (No. 1610072017006)the 13th five-year development plan of China by the National Key Research and Development Program 2017YFC1600301

Figures(5)

  • Persistent Organic Pollutants (POPs), represented by dioxins and dioxin-like polychlorinated biphenyls have the property of teratogenic, carcinogenic and mutagenic, which have been classified as Group A human carcinogen by the international agency for research on cancer (IARC) and put into the initial list of Stockholm Convention managed by the United Nations Environment Program. POPs have posed a threat and impact on food security through the food chain from environment. The conventional detection methods, such as liquid chromatography-tandem mass spectrometry, high resolution gas chromatography-mass spectrometry and two-dimensional gas chromatography with time-of-flight mass spectrometry are sufficiently accurate, but fail to meet the requirements of on-site detection. Meanwhile, the rapid testing technologies for PCBs mainly included fluorescence detection, electrochemical sensors, and so on. As a new type of rapid detection technology, Surface-enhanced Raman Spectroscopy (SERS) has attracted significant attention as a promising analytical technique. With its ultra-sensitivity, high speed detection, ease of operation, SERS is particularly well-suited for the rapid detection of POPs. However, the multiple molecules in matrices may generate interfering Raman signals via competitive adsorption with the target compound on the substrate surface in the SERS detection of real samples. In addition, reproducibility represents a major bottleneck for the widespread application of SERS. Metal nanoparticle colloids are widely used as SERS substrates due to the hot spots formed between the nanoparticles. However, metal nanoparticle aggregation in colloidal solutions is difficult to control, leading to the random formation of hot spots. When the target POPs exist near the hot spots, the intensities of the enhanced Raman signals were unstable. Other factors influenced by the chemical adsorption such as vibration, charge transfer, and the deformation or distortion of molecules also affect the Raman signals. In the review, we provide an overview of the recent advances in SERS for POPs determination, especially the different types of enhanced substrates. And several key technical points of SERS detection including sensitivity, selectivity, and reproducibility have been summarized. Finally, the development of SERS for POPs detection in the future are proposed.
  • 加载中
    1. [1]

      Cammilleri, G.; Calvaruso, E.; Pantano, L; Cascio, G. L.; Randisi, B.; Macaluso, A.; Vazzana, M.; Caracappa, G.; Giangrosso, G.; Vella, A.; Ferrantelli, V. Environ. Toxicol. Chem. 2017, 36, 2997.  doi: 10.1002/etc.3866

    2. [2]

      Adam, T. S. G.; Christoph, A.; Craig, A. B.; Barry, C. P. Mar. Pollut. Bull. 2017, 120, 414.  doi: 10.1016/j.marpolbul.2017.05.001

    3. [3]

      Jamieson, A. J.; Malkocs, T.; Piertney, S.; Fujii, T.; Zhang, Z. L. Nat. Ecol. Evol. 2017, 0051.

    4. [4]

      Matuszak, M.; Minorczyk, M.; Góralczyk, K.; Hernik, A.; Struciński, P.; Liszewska, M.; Czaja, K.; Korcz, W.; Łyczewska, M.; Ludwicki, J. K. Rocz Panstw Zakl Hig. 2016, 67, 113.

    5. [5]

      Lv, F.; Gan, N.; Cao, Y.; Zhou, Y.; Zuo, Y.; Dong, Y. J. Chromatogr. A 2017, 1525, 42.  doi: 10.1016/j.chroma.2017.10.026

    6. [6]

      United States Environmental Protection Agency, 2010, Method 1678C.

    7. [7]

      Xia, D.; Gao, L.; Zheng, M.; Wang, S.; Liu, G. Anal. Chim. Acta 2016, 937, 160.  doi: 10.1016/j.aca.2016.07.018

    8. [8]

      Dam, G. T.; Pussente, I. C.; Scholl, G.; Eppe, G.; Schaechtele, A.; Leeuwen, S. V. J. Chromatogr. A 2016, 1477, 76.  doi: 10.1016/j.chroma.2016.11.035

    9. [9]

      Li, W.; Liu, D.; Li, J.; Gao, J.; Zhang, C.; Wang, P.; Zhou, Z. Chromatographia 2017, 80, 813.  doi: 10.1007/s10337-017-3282-6

    10. [10]

      Nebert, D. W. G.; Goujon, F.; Gielen, J. Nature 1972, 236, 107.

    11. [11]

      Commission Directive 2002/69/EC. Official J. Eur. Communities 2002a.

    12. [12]

      Levy, W.; Brena, B. M.; Henkelmann, B.; Bernhöft, S.; Pirez, M.; González-Sapienza, G.; Schramm, K. W. Toxicol. in Vitro 2014, 28, 1036.  doi: 10.1016/j.tiv.2014.04.009

    13. [13]

      Crump, D.; Farhat, A.; Chiu, S.; Williams, K. L.; Jones, S. P.; Langlois, V. S. Environ. Sci. Technol. 2016, 50, 3265.  doi: 10.1021/acs.est.5b06181

    14. [14]

      Urbaniak, M.; Tygielska, A.; Krauze, K. Plos One 2016, 11, e0151756.  doi: 10.1371/journal.pone.0151756

    15. [15]

      Ching, L.; Eric, B.; James, L.; Zhang, W. Anal. Bioanal. Chem. 2016, 408, 1095.  doi: 10.1007/s00216-015-9205-1

    16. [16]

      Babikian, S.; Li, G. P.; Bachman, M. IEEE Transactions on Components 2017, 7, 846.

    17. [17]

      Yang, G.; Zhuang, H.; Chen, H.; Ping, X.; Bu, D. Sens. Actuators B 2015, 214, 152.  doi: 10.1016/j.snb.2015.02.128

    18. [18]

      Zheng, X.; Li, H.; Xia, F.; Tian, D.; Hua, X.; Qiao, X.; Zhou, C. Electrochim. Acta 2016, 194, 413.  doi: 10.1016/j.electacta.2016.02.115

    19. [19]

      Moskovits, M. J. Chem. Phys. 1982, 77, 4408.

    20. [20]

      Ruchita, S.; Agrawal, Y. K. Vib. Spectrosc. 2011, 57, 163.  doi: 10.1016/j.vibspec.2011.08.003

    21. [21]

      Liang, H. Y.; Li, Z. P.; Wang, W. Z.; Wu, Y. S.; Xu, H. X. Adv. Mater. 2009, 21, 4614.  doi: 10.1002/adma.200901139

    22. [22]

      Wang, X. S.; Yang, D. P.; Huang, P.; Li, M.; Chen, D.; Cui, D. X. Nanoscale 2012, 24, 7766.

    23. [23]

      Wang, P.; Wu, L.; Lu, Z. C.; Li, Q.; Yin, W. M.; Ding, F.; Han, H. Y. Anal. Chem. 2017, 89, 2424.  doi: 10.1021/acs.analchem.6b04324

    24. [24]

      Zhang, B.; Xu, P.; Xie, X. M.; Wei, H.; Li, Z. P.; Mack, N. H.; Han, X. J.; Xu, H. X.; Wang, H. L. J. Mater. Chem. 2011, 21, 2495.  doi: 10.1039/C0JM02837A

    25. [25]

      Panneerselvam, R.; Liu, G. K.; Wang, Y. H.; Liu, J. Y.; Ding, S. Y.; Li, J. F.; Wu, D. Y.; Tian, Z. Q. Chem. Commun. 2018, 54, 10.  doi: 10.1039/C7CC05979E

    26. [26]

      Xu, W. G.; Mao, N. N.; Zhang, J. Small 2013, 8, 1206.

    27. [27]

      Cheng, J.; Su, X. O.; Han, C. Q.; Wang, S.; Wang, P. L.; Zhang, S.; Xie, J. C. Sens. Actuators B 2018, 255, 2329.  doi: 10.1016/j.snb.2017.09.047

    28. [28]

      Cheng, J.; Zhang, S.; Wang, S.; Wang, P. L.; Su, X. O.; Xie, J. C. Food Chem. 2019, 276, 157.  doi: 10.1016/j.foodchem.2018.10.004

    29. [29]

      Yao, Y.; Wang, W.; Tian, K. Z.; Ingram, W. M.; Cheng, J.; Qu, L. L.; Li, H. T.; Han, C. Q. Spectrochim. Acta A 2018, 195, 165.  doi: 10.1016/j.saa.2018.01.072

    30. [30]

      Cheng, J.; Su, X. O.; Yao, Y.; Han, C. Q.; Wang, S.; Zhao, Y. P. Plos one 2016, 11, e0154402.  doi: 10.1371/journal.pone.0154402

    31. [31]

      Han, C. Q.; Chen, J.; Wu, X. M.; Huang, Y. W. Talanta 2014, 128, 293.  doi: 10.1016/j.talanta.2014.04.083

    32. [32]

      Patricia, T. B.; Niklaas, J. B.; Laura, R. L.; Jorge, P. J.; Luis, M. L. M.; Pablo, H. J. Mater. Chem. 2011, 21, 16880.  doi: 10.1039/c1jm12175h

    33. [33]

      Bonyár, A.; Csarnovics, I.; Veres, M.; Himics, L.; Csik, A.; Kámán, J.; Balázs, L.; Kökényesi, S. Sens. Actuators B 2018, 255, 433.  doi: 10.1016/j.snb.2017.08.063

    34. [34]

      Feng, J. Y.; Hu, Y. X.; Grant, E.; Lu, X. Food Chem. 2018, 239, 816.  doi: 10.1016/j.foodchem.2017.07.014

    35. [35]

      Zhao, B. W.; Feng, S. L.; Hu, Y. X.; Wang, S.; Lu, X. N. Food Chem. 2019, 276, 366.  doi: 10.1016/j.foodchem.2018.10.036

    36. [36]

      Fu, C. C.; Wang, Y.; Chen, G.; Yang, L. Y.; Xu, S. P.; Xu, W. Q. Anal. Chem. 2015, 87, 9555.  doi: 10.1021/acs.analchem.5b02508

    37. [37]

      Sun, K.; Huang, Q.; Meng, G. W.; Lu, Y. L. ACS Appl. Mater. Interfaces 2016, 8, 5723.  doi: 10.1021/acsami.5b12866

    38. [38]

      Lopez, A.; Lovato, F.; Oh, S. H.; Lai, Y. H.; Filbrun, S.; Driskell, E. A.; Driskell, J. D. Talanta 2016, 146, 388.  doi: 10.1016/j.talanta.2015.08.065

    39. [39]

      Zhang, M.; Zhang, X.; Shi, Y.; Liu, Z.; Zhan, J. Talanta 2016, 158, 322.  doi: 10.1016/j.talanta.2016.05.069

    40. [40]

      Chen, Y.; Zhang, Y.; Pan, F.; Liu, J.; Wang, K.; Zhang, C.; Cheng, S.; Lu, L.; Zhang, W.; Zhang, Z.; Zhi, X.; Zhang, Q.; Alfranca, G.; De la Fuente, J. M.; Chen, D.; Cui, D. ACS Nano 2016, 10, 8169.  doi: 10.1021/acsnano.6b01441

    41. [41]

      Li, B.; Shi, Y.; Cui, J.; Liu, Z.; Zhang, X.; Zhan, J. Anal. Chim. Acta 2016, 923, 66.  doi: 10.1016/j.aca.2016.04.002

    42. [42]

      Fang, F.; Qi, Y.; Lu, F.; Yang, L. Talanta 2016, 146, 351.  doi: 10.1016/j.talanta.2015.08.067

    43. [43]

      Tang, H. B.; Meng, G. W.; Huang, Q.; Zhang, Z.; Huang, Z. L.; Zhu, C. H. Adv. Funct. Mater. 2012, 22, 218.  doi: 10.1002/adfm.201102274

    44. [44]

      Li, Z. B.; Meng, G. W.; Huang, Q.; Hu, X. Y.; He, X.; Tang, H. B.; Wang, Z. W.; Li, F. D. Small 2015, 40, 5452

    45. [45]

      Bantz, K. C.; Haynes, C. L. Vib. Spectrosc. 2009, 50, 29.  doi: 10.1016/j.vibspec.2008.07.006

    46. [46]

      Lu, Y. L.; Yao, G. H.; Sun, K. X.; Huang, Q. Phys. Chem. Chem. Phys. 2015, 17, 21149.  doi: 10.1039/C4CP04904G

    47. [47]

      Zhu, C.; Meng, G. W.; Huang, Q.; Li, Z. B.; Huang, Z. L.; Wang, M. L.; Yuan, J. P. J. Mater Chem. 2012, 22, 2271.  doi: 10.1039/C2JM14823D

    48. [48]

      Arocikia, J. D.; Parimaladevi, R.; Vasant, S. G.; Umadevi, M. J. Clust. Sci. 2018, 29, 281.  doi: 10.1007/s10876-017-1323-9

    49. [49]

      Shanta, P. V.; Cheng, Q. ACS Sensors 2017, 6, 817.

    50. [50]

      Jency, D. A.; Umadevi, M.; Sathe, G. V. J. Raman Spectrosc. 2015, 46, 377.  doi: 10.1002/jrs.4654

    51. [51]

      Xu, W.; Meng, G. W., Huang, Q.; Hu, X. Y.; Huang, Z. L.; Tang, H. B.; Zhang, J. X. Appl. Surf. Sci. 2013, 271, 125.  doi: 10.1016/j.apsusc.2013.01.144

    52. [52]

      Lu, Y. L.; Huang, Q.; Meng, G. W.; Wu, L. J.; Zhang, J. J. Analyst 2014, 139, 3083.  doi: 10.1039/c4an00197d

    53. [53]

      Zhang, C. Y.; Hao, R.; Fu, Y. Z.; Zhang, H.; Moeendarbari, J. S.; Peckering, C. S.; Hao, Y. W.; Liu, Y. Q. Appl. Surf. Sci. 2017, 400, 49.  doi: 10.1016/j.apsusc.2016.12.161

    54. [54]

      Rindzevicius, T.; Barten, J.; Vorobiev, M.; Schmidt, M. S.; Castillo, J. J.; Boisen, A. Vib. Spectrosc. 2017, 90, 1.  doi: 10.1016/j.vibspec.2017.02.004

    55. [55]

      Jiao, C. L.; Wang, W.; Liu, J.; Yuan, Y. X.; Xu, M. M.; Yao, J. L. Acta Chim. Sinica 2018, 76, 526.
       

    56. [56]

      Liu, J.; Sun, H. L.; Yin, L.; Yuan, Y. X.; Xu, M. M.; Yao, J. L. Acta Chim. Sinica 2019, 77, 257.  doi: 10.3866/PKU.WHXB201803191
       

    57. [57]

      Jia, F. L.; Liu, J.; Zhang, L. Z. Acta Chim. Sinica 2017, 75, 602.  doi: 10.3866/PKU.WHXB201611251
       

    58. [58]

      Commission Directive 277/2012/EC. Official J. Eur. Communities 2012.

    59. [59]

      National standards of the People's Republic of China, GB/T 2762-2017.

    60. [60]

      National standards of the People's Republic of China, GB/T 13078-2017.

  • 加载中
    1. [1]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    2. [2]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    3. [3]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    4. [4]

      Yue-Zhou ZhuKun WangShi-Sheng ZhengHong-Jia WangJin-Chao DongJian-Feng Li . Application and Development of Electrochemical Spectroscopy Methods. Acta Physico-Chimica Sinica, 2024, 40(3): 2304040-0. doi: 10.3866/PKU.WHXB202304040

    5. [5]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    6. [6]

      Ruiqin FengYe FanYun FangYongmei Xia . Strategy for Regulating Surface Protrusion of Gold Nanoflowers and Their Surface-Enhanced Raman Scattering. Acta Physico-Chimica Sinica, 2024, 40(4): 2304020-0. doi: 10.3866/PKU.WHXB202304020

    7. [7]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    8. [8]

      Yufan ZHAOJinglin YOUShixiang WANGGuopeng LIUXiang XIAYingfang XIEMeiqin SHENGFeiyan XUKai TANGLiming LU . Raman spectroscopic quantitative study of the melt microstructure in binary Li2O-GeO2 functional crystals. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1533-1544. doi: 10.11862/CJIC.20250063

    9. [9]

      Jingyi Chen Fu Liu Tiejun Zhu Kui Cheng . Practice of Integrating Ideological and Political Education into Raman Spectroscopy Analysis Experiment Course. University Chemistry, 2024, 39(2): 140-146. doi: 10.3866/PKU.DXHX202310111

    10. [10]

      Wei Peng Baoying Wen Huamin Li Yiru Wang Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062

    11. [11]

      Zhaoyue Lü Zhehao Chen Yi Ni Duanbin Luo Xianfeng Hong . Multi-Level Teaching Design and Practice Exploration of Raman Spectroscopy Experiment. University Chemistry, 2024, 39(11): 304-312. doi: 10.12461/PKU.DXHX202402047

    12. [12]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    13. [13]

      Mengyao Shi Kangle Su Qingming Lu Bin Zhang Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105

    14. [14]

      Xue WuYupeng LiuBingzhe WangLingyun LiZhenjian LiQingcheng WangQuansheng ChengGuichuan XingSongnan Qu . Rationally assembling different surface functionalized carbon dots for enhanced near-infrared tumor photothermal therapy. Acta Physico-Chimica Sinica, 2025, 41(9): 100109-0. doi: 10.1016/j.actphy.2025.100109

    15. [15]

      Yongzhi LIHan ZHANGGangding WANGYanwei SUILei HOUYaoyu WANG . A two-dimensional metal-organic framework for the determination of nitrofurantoin and nitrofurazone in aqueous solution. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 245-253. doi: 10.11862/CJIC.20240307

    16. [16]

      Shiyang HeDandan ChuZhixin PangYuhang DuJiayi WangYuhong ChenYumeng SuJianhua QinXiangrong PanZhan ZhouJingguo LiLufang MaChaoliang Tan . Pt Single-Atom-Functionalized 2D Al-TCPP MOF Nanosheets for Enhanced Photodynamic Antimicrobial Therapy. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-0. doi: 10.1016/j.actphy.2025.100046

    17. [17]

      Yangrui XuYewei RenXinlin LiuHongping LiZiyang Lu . NH2-UIO-66 Based Hydrophobic Porous Liquid with High Mass Transfer and Affinity Surface for Enhancing CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-0. doi: 10.3866/PKU.WHXB202403032

    18. [18]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    19. [19]

      Tieping CAOYuejun LIDawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366

    20. [20]

      Heng ChenLonghui NieKai XuYiqiong YangCaihong Fang . Remarkable Photocatalytic H2O2 Production Efficiency over Ultrathin g-C3N4 Nanosheet with Large Surface Area and Enhanced Crystallinity by Two-Step Calcination. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-0. doi: 10.3866/PKU.WHXB202406019

Metrics
  • PDF Downloads(49)
  • Abstract views(2399)
  • HTML views(381)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return