Citation: Wu Zhuomin, Shi Yong, Li Chunyan, Niu Danyang, Chu Qi, Xiong Wei, Li Xinyong. Synthesis of Bimetallic MOF-74-CoMn Catalyst and Its Application in Selective Catalytic Reduction of NO with CO[J]. Acta Chimica Sinica, ;2019, 77(8): 758-764. doi: 10.6023/A19040129 shu

Synthesis of Bimetallic MOF-74-CoMn Catalyst and Its Application in Selective Catalytic Reduction of NO with CO

  • Corresponding author: Shi Yong, sys-99@163.com
  • Received Date: 11 April 2019
    Available Online: 8 August 2019

    Fund Project: Project supported by the National Natural Science Foundation of China (No. 21677022)the National Natural Science Foundation of China 21677022

Figures(11)

  • A series of bimetallic MOF-74-CoMn catalysts with different metal ratios have been successfully synthesized by hydrothermal method and applied in selective catalytic reduction of NO with CO (CO-SCR). The experimental procedure for the preparation of MOF-74-CoMn catalyst is as follows:The reaction solution was a 3.28 mmol mixture of Co(NO3)2·6H2O and Mn(NO3)2·6H2O, 1.09 mmol 2, 5-dihydroxyterephthalic acid (H4DOBDC) and 90 mL ethanol-DMF-water. The molar ratio of mixture (Co/Mn) was 1:0, 1:1, 1:2, 1:4, 1:6, respectively. The reactant solution was ultrasonically stired for 30 min until homogeneous. Then, the mixture was transferred into a 100 mL Teflon autoclave then kept in an oven at 100℃ for 24 h. Finally, after purified with DMF and methanol, the products were dried in a vacuum oven at 80℃ for 24 h to obtain a purple MOF-74-CoMn catalyst, which were stored in vacuum or an inert atmosphere. The prepared sample is referred to as MOF-74-Co1Mnx, where x represents a molar ratio of Co to Mn is 1:x (x=0, 1, 2, 4, 6). The SCR catalytic activities were carried out in a fixed-bed flow reactor in gas stream. The experimental results show that the NOx conversion rate of bimetallic MOF-74-CoMn catalyst is generally higher than that of single metal MOF-74-Co catalyst, and their reaction temperature window is wider. Especially, MOF-74-Co1Mn2 exhibited the highest selective catalytic reduction of NO with CO (CO-SCR) performance which is close to 100% with a temperature range from 175 to 275℃. Further, the bimetallic MOFs catalysts were characterized by X-ray powder diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), N2 adsorption/desorption, X-ray photoelectron spectroscopy (XPS), Hydrogen-temperature programed reduction (H2-TPR) and Infrared spectroscopy (FTIR) techniques. The results showed that the synergistic effect between Co and Mn metals could obviously promote the formation of unsaturated metal sites and oxygen vacancies, thereby promoting their catalytic reduction efficiency of selective catalytic reduction of NO with CO (CO-SCR).
  • 加载中
    1. [1]

      Qu, Y.; An, J. L.; He, Y. J.; Zheng, J. J. Environ. Sci. 2016, 44, 13.  doi: 10.1016/j.jes.2015.08.028

    2. [2]

      Saikawa, E.; Kim, H.; Zhong, M.; Avramov, A.; Zhao, Y.; Janssens-Maenhout, G.; Kurokawa, J.; Klimont, Z.; Wagner, F.; Naik, V.; Horowitz, L. W.; Zhang, Q. Atmos. Chem. Phys. 2017, 17, 6393.  doi: 10.5194/acp-17-6393-2017

    3. [3]

      Hamada, H.; Hanedab, M. Appl. Catal. A 2012, 421, 1.

    4. [4]

      Skalska, K.; Miller, J. S.; Ledakowicz, S. Sci. Total Environ. 2010, 408, 3976.  doi: 10.1016/j.scitotenv.2010.06.001

    5. [5]

      Liu, T. K.; Qian, J. N.; Yao, Y. Y.; Shi, Z. F.; Han, L. Y.; Liang, C. Y.; Li, B.; Dong, L. H.; Fan, M. G.; Zhang, L. L. J. Mol. Catal. A:Chem. 2017, 430, 43.

    6. [6]

      Li, S. S; Wang, F. Z. R.; Liu, Y. M.; Cao, Y. Chin. J. Chem. 2017, 35, 591.  doi: 10.1002/cjoc.201600715

    7. [7]

      Shin, H. U.; Lolla, D.; Nikolov, Z.; Chase, G. G. J. Ind. Eng. Chem. 2016, 33, 91.  doi: 10.1016/j.jiec.2015.09.020

    8. [8]

      Liu, J.; Li, X. Y.; Zhao, Q. D.; Ke, J.; Xiao, H. N.; Lv, X. J.; Liu, S. M.; Tadéc, M.; Wang, S. B. Appl. Catal. B 2017, 200, 297.  doi: 10.1016/j.apcatb.2016.07.020

    9. [9]

      Lee, Y. R.; Kim, J.; Ahn, W. S. Korean J. Chem. Eng. 2013, 30, 1667.  doi: 10.1007/s11814-013-0140-6

    10. [10]

      Wang, J. H.; Zhao, H. W.; Haller, G.; Li, Y. D. Appl. Catal. B 2017, 202, 346.  doi: 10.1016/j.apcatb.2016.09.024

    11. [11]

      Cai, S. X.; Liu, J.; Zha, K. W.; Li, H. R.; Shi, L. Y.; Zhang, D. S. Nanoscale 2017, 9, 5648.  doi: 10.1039/C6NR09917C

    12. [12]

      Shi, Y.; Tang, X. L.; Yi, H. L.; Gao, F. Y.; Zhao, S. Z.; Wang, J. G.; Yang, K.; Zhang, R. C. Ind. Eng. Chem. Res. 2019, 58, 3606.  doi: 10.1021/acs.iecr.8b05223

    13. [13]

      Shen, Q.; Zhang, L. Y.; Sun, N. N.; Wang, H.; Zhong, L. S.; He, C.; Wei, W.; Sun, Y. H. Chem. Eng. J. 2017, 322, 46.  doi: 10.1016/j.cej.2017.02.148

    14. [14]

      Cheng, X. X.; Bi, X. T. Particuology 2014, 16, 1.  doi: 10.1016/j.partic.2014.01.006

    15. [15]

      Dai, X. X.; Jiang, W. Y.; Wang, W. L.; Weng, X, L.; Shang, Y.; Xue, Y. H.; Wu, Z. B. Chin. J. Catal. 2018, 39, 728.  doi: 10.1016/S1872-2067(17)63008-0

    16. [16]

      Zhang, L.; Shi L. Y.; Huang L.; Zhang, J. P.; Gao, R. H.; Zhang, D. S. ACS Catal. 2014, 4, 1753.  doi: 10.1021/cs401185c

    17. [17]

      Liu, Z. Z.; Shi, Y.; Li, C. Y.; Zhao, Q. D.; Li, X. Y. Acta Phys.-Chim. Sin. 2015, 31, 9.

    18. [18]

      Huang, G.; Chen, Y. Z.; Jiang, H. L. Acta Chim. Sinica 2016, 74, 113.  doi: 10.3969/j.issn.0253-2409.2016.01.016
       

    19. [19]

      Xiao, J. D.; Jiang, H. L. Acc. Chem. Res. 2019, 52, 356.  doi: 10.1021/acs.accounts.8b00521

    20. [20]

      Jiao, L.; Wang, Y.; Jiang, H. L.; Xu, Q. Adv. Mater. 2018, 30, 1703663.  doi: 10.1002/adma.201703663

    21. [21]

      Adhikari, A. K.; Lin, K. S. Chem. Eng. J. 2016, 284, 1348.  doi: 10.1016/j.cej.2015.09.086

    22. [22]

      Yan, L. T.; Dai, P. C.; Wang, Y.; Gu, X.; Li, L. J.; Cao, L.; Zhao, X. B. ACS Appl. Mater. Interfaces 2017, 9, 11642.  doi: 10.1021/acsami.7b01037

    23. [23]

      Sun, D. R.; Ye, L.; Sun, F. X.; García, H.; Li, Z. H. Inorg. Chem. 2017, 56, 5203.  doi: 10.1021/acs.inorgchem.7b00333

    24. [24]

      Pliekhov, O.; Pliekhova, O.; Lavrenčič štangar, U.; Logar, N. Z. Catal. Commun. 2018, 110, 88.  doi: 10.1016/j.catcom.2018.03.021

    25. [25]

      Jiang, H. X.; Niu, Y.; Wang, Q. Y.; Chen, Y. F.; Zhang, M. H. Catal. Commun. 2018, 113, 46.  doi: 10.1016/j.catcom.2018.05.017

    26. [26]

      Chen, S.; Xue, M.; Li, Y. Q.; Pan, Y.; Zhu, L. K.; Qiu, S. L. J. Mater. Chem. 2015, 3, 20145.  doi: 10.1039/C5TA02557E

    27. [27]

      Liu, T. K.; Yao, Y. Y.; Wei, L. Q.; Shi, Z. F.; Han, L. Y.; Yuan, H. X.; Li, B.; Dong, L. H.; Wang, F.; Sun, C. Z. J. Phys. Chem. C 2017, 121, 12757.  doi: 10.1021/acs.jpcc.7b02052

    28. [28]

      Kim, S. H.; Lee, Y. J.; Kim, D. H.; Lee, Y. J. ACS Appl. Mater. Interfaces 2018, 10, 660.  doi: 10.1021/acsami.7b15499

    29. [29]

      Nguyen, H. T. T.; Doan, D. N. A.; Truong, T. J. Mol. Catal. A:Chem. 2017, 426, 141.  doi: 10.1016/j.molcata.2016.11.009

    30. [30]

      Liu, K. J.; Yu, Q. B.; Liu, J. L.; Wang, K.; Han, Z. C.; Xuan, Y. N.; Qin, Q. New J. Chem. 2017, 41, 13993.  doi: 10.1039/C7NJ02694C

    31. [31]

      Hu, H.; Cai, S. X.; Li, H. R.; Huang, L.; Shi, L. Y.; Zhang, D. S. ACS Catal. 2015, 5, 6069.  doi: 10.1021/acscatal.5b01039

    32. [32]

      Qin, Y. L.; Huang, L.; Zheng, J. X.; Ren, Q. Inorg. Chem. Commun. 2016, 72, 78.  doi: 10.1016/j.inoche.2016.08.018

    33. [33]

      Gao, F. Y.; Tang, X. L.; Yi, H. H.; Li, J. Y.; Zhao, S. Z.; Wang, J. G.; Chu, C.; Li, C. L. Chem. Eng. J. 2017, 317, 20.  doi: 10.1016/j.cej.2017.02.042

    34. [34]

      Dietzel, P. D. C.; Morita, Y.; Blom, R.; Fjellvag, H. Angew. Chem. Int. Ed. 2005, 44, 6354.  doi: 10.1002/anie.200501508

    35. [35]

      Yan, L. T.; Cao, L.; Dai, P. C.; Gu, X.; Liu, D. D.; Li, L. J.; Wang, Y.; Zhao, X. B. Adv. Funct. Mater. 2017, 27, 1703455.  doi: 10.1002/adfm.201703455

    36. [36]

      Jiang, H. X.; Wang, Q. Y.; Wang, H. Q.; Chen, Y. F.; Zhang, M. H. ACS Appl. Mater. Interfaces 2016, 8, 26817.  doi: 10.1021/acsami.6b08851

  • 加载中
    1. [1]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    2. [2]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    3. [3]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    4. [4]

      Mengzhen JIANGQian WANGJunfeng BAI . Research progress on low-cost ligand-based metal-organic frameworks for carbon dioxide capture from industrial flue gas. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 1-13. doi: 10.11862/CJIC.20240355

    5. [5]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    6. [6]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    7. [7]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    8. [8]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    9. [9]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    10. [10]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    11. [11]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    12. [12]

      Runhua Chen Qiong Wu Jingchen Luo Xiaolong Zu Shan Zhu Yongfu Sun . 缺陷态二维超薄材料用于光/电催化CO2还原的基础与展望. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-. doi: 10.3866/PKU.WHXB202308052

    13. [13]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    14. [14]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    15. [15]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    16. [16]

      Bin HEHao ZHANGLin XUYanghe LIUFeifan LANGJiandong PANG . Recent progress in multicomponent zirconium?based metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2041-2062. doi: 10.11862/CJIC.20240161

    17. [17]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    18. [18]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    19. [19]

      Xiaofang DONGYue YANGShen WANGXiaofang HAOYuxia WANGPeng CHENG . Research progress of conductive metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 14-34. doi: 10.11862/CJIC.20240388

    20. [20]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

Metrics
  • PDF Downloads(118)
  • Abstract views(4806)
  • HTML views(2063)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return