Citation: Zhao Yong, Li Shihong, Zhang Miaomiao, Liu Feng. ynthesis of β, γ-Unsaturated Esters and γ-Ketone Esters with Amino Acid Ester-Derived Katritzky Salts[J]. Acta Chimica Sinica, ;2019, 77(9): 916-921. doi: 10.6023/A19040121 shu

ynthesis of β, γ-Unsaturated Esters and γ-Ketone Esters with Amino Acid Ester-Derived Katritzky Salts

  • Corresponding author: Liu Feng, fliu2@suda.edu.cn
  • Received Date: 8 April 2019
    Available Online: 22 September 2019

    Fund Project: Project supported by the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (No. 18KJA350001)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China 18KJA350001

Figures(3)

  • β, γ-Unsaturated ester and γ-ketone ester are important synthons, which can be used to convert into various heterocyclic compounds, natural products and pharmaceuticals. The development of efficient methods for the synthesis of β, γ-unsaturated ester and γ-ketone ester compounds has attracted much attention from synthetic chemists. By using Katritzky pyridinium salts as radical precursors, commercially available Ru(bpy)3Cl2•6H2O as photocatalyst, K2CO3 as base, and dichloromethane (DCM) as solvent, we developed a simple and efficient method for the synthesis of a series of β, γ-unsaturated esters and γ-ketone esters by C-N bond activation. Bench-stable and easily handled redox-active Katritzky pyridinium salts derived from abundant amino acids were used as radical precursors for the alkylation of 1, 1-diarylethylene and aryl enol silyl ether species upon irradiation with household blue LEDs. The reaction displays an excellent functional group tolerance and a potential utility for amino acids functionalization, allowing to access desired products in moderate to good yields. Moreover, under air conditions, the reaction has moderate compatibility. Scaling up the reaction in grams, the yield was higher and the target product was obtained with 91% yield. Control experiments demonstrated that the photocatalyst and visible light were both essential for the success of the reaction. Performing the reaction in the presence of radical scavenger TEMPO, did lead to no desired product 3a formation. Moreover, a TEMPO-trapped product was determined by MS analysis and NMR, indicating a radical-type mechanism of this reaction. It is of note that this protocol could offer a powerful complementary strategy for the use of amino acids that were also employed in photoredox-catalyzed decarboxylative reactions. A representative procedure for this reaction is as following:A 10 mL oven-dried Schlenk-tube was charged with 1a (111.5 mg, 0.20 mmol), Ru(bpy)3Cl2•6H2O (3.0 mg, 2 mol%), K2CO3 (55.2 mg, 0.40 mmol) and a magnetic stirring bar. The tube was evacuated and back-filled three times with argon. A solution of 2a (53 μL, 0.30 mmol) in DCM (2 mL) was injected into the tube by syringe. The resulting mixture was stirred at room temperature upon irradiation with blue LEDs (22 W) and monitored by thin-layer chromatography (TLC). After completion, the solvent was then removed under reduced pressure and the residue was purified by flash column chromatography on silica gel to give 3a as an off-white solid (42.7 mg, 65% yield).
  • 加载中
    1. [1]

    2. [2]

    3. [3]

      For selected recent examples, see: (a) Kautzky, J. A.; Wang, T.; Evans, R. W.; MacMillan, D. W. C. J. Am. Chem. Soc. 2018, 140, 6522; (b) Bloom, S.; Liu, C.; K lmel, D. K.; Qiao, J.-X.; Zhang, Y.; Poss, M. A.; Ewing, W. R.; MacMillan, D. W. C. Nature Chem. 2018, 10, 205; (c) Zhao, Y.; Chen, J.-R.; Xiao, W.-J. Org. Lett. 2018, 20, 224; (d) Cheng, W.-M.; Shang, R.; Fu, M.-C.; Fu, Y. Chem. Eur. J. 2017, 23, 2537; (e) Wang, D.; Zhu, N.; Chen, P.; Lin, Z.; Liu, G. J. Am. Chem. Soc. 2017, 139, 15632; (f) Fawcett, A.; Pradeilles, J.; Wang, Y.; Mutsuga, T.; Myers, E. L.; Aggarwal, V. K. Science 2017, 357, 283; (g) Garza-Sanchez, R. A.; Tlahuext-Aca, A.; Tavakoli, G.; Glorius, F. ACS Catal. 2017, 7, 4057; (h) Cheng, W.-M.; Shang, R.; Fu, Y. ACS Catal. 2017, 7, 907; (i) McCarver, S. J.; Qiao, J.-X.; Carpenter, J.; Borzilleri, R. M.; Poss, M. A.; Eastgate, M. D.; Miller, M.; MacMillan, D. W. C. Angew. Chem., Int. Ed. 2017, 56, 728; (j) Johnston, C. P.; Smith, R.; Allmendinger, T. S.; MacMillan, D. W. C. Nature 2016, 536, 322; (k) Müller, D. S.; Untiedt, N. L.; Dieskau, A. P.; Lackner, G. L.; Overman, L. E. J. Am. Chem. Soc. 2015, 137, 660.

    4. [4]

      For selected recent examples, see: (a) Zhou, W.-J.; Cao, G.-M.; Shen, G.; Zhu, X.-Y.; Gui, Y.-Y.; Ye, J.-H.; Sun, L.; Liao, L.-L.; Li, J.; Yu, D.-G. Angew. Chem., Int. Ed. 2017, 56, 15683; (b) Nuhant, P.; Oderinde, M. S.; Genovino, J.; Juneau, A.; Gagné, Y.; Allais, C.; Chinigo, G. M.; Choi, C.; Sach, N. W.; Bernier, L.; Fobian, Y. M.; Bundesmann, M. W.; Khunte, B.; Frenette, M.; Fadeyi, O. O. Angew. Chem., Int. Ed. 2017, 56, 15309; (c) Zhang, P.; Le, C.; MacMillan, D. W. C. J. Am. Chem. Soc. 2016, 138, 8084; (d) Feng, Z.; Min, Q.-Q.; Zhao, H.-Y.; Gu, J.-W.; Zhang, X. Angew. Chem., Int. Ed. 2015, 54, 1270; (e) Iqbal, N.; Choi, S.; Kim, E.; Cho, E. J. J. Org. Chem. 2012, 77, 11383.

    5. [5]

      For selected recent examples, see: (a) Lima, F.; Sharma, U. K.; Grunenberg, L.; Saha, D.; Johannsen, S.; Sedelmeier, J.; Van der Eycken, E. V.; Ley, S. V. Angew. Chem., Int. Ed. 2017, 56, 15136; (b) Matsui, J. K.; Primer, D. N.; Molander, G. A. Chem. Sci. 2017, 8, 3512; (c) Amani, J.; Molander, G. A. Org. Lett. 2017, 19, 3612; (d) Primer, D. N.; Molander, G. A. J. Am. Chem. Soc. 2017, 139, 9847; (e) Lima, F.; Kabeshov, M. A.; Tran, D. N.; Battilocchio, C.; Sedelmeier, J.; Sedelmeier, G.; Schenkel, B.; Ley, S. V. Angew. Chem., Int. Ed. 2016, 55, 14085; (f) Huo, H.; Harms, K.; Meggers, E. J. Am. Chem. Soc. 2016, 138, 6936; (g) El Khatib, M.; Serafim, R. A. M.; Molander, G. A. Angew. Chem., Int. Ed. 2016, 55, 254; (h) Primer, D. N.; Karakaya, I.; Tellis, J. C.; Molander, G. A. J. Am. Chem. Soc. 2015, 137, 2195.

    6. [6]

      For selected recent examples, see: (a) Lang, S. B.; Wiles, R. J.; Kelly, C. B.; Molander, G. A. Angew. Chem., Int. Ed. 2017, 56, 15073; (b) Zheng, S.; Primer, D. N.; Molander, G. A. ACS Catal. 2017, 7, 7957; (c) Remeur, C.; Kelly, C. B.; Patel, N. R.; Molander, G. A. ACS Catal. 2017, 7, 6065; (d) Lin, K.; Wiles, R. J.; Kelly, C. B.; Davies, G. H. M.; Molander, G. A. ACS Catal. 2017, 7, 5129; (e) Patel, N. R.; Kelly, C. B.; Siegenfeld, A. P.; Molander, G. A. ACS Catal. 2017, 7, 1766; (f) Deng, Y.; Liu, Q. Smith, A. B. J. Am. Chem. Soc. 2017, 139, 9487; (g) Jouffroy, M.; Primer, D. N.; Molander, G. A. J. Am. Chem. Soc. 2016, 138, 475; (h) Corc, V.; Chamoreau, L.-M.; Derat, E.; Goddard, J.-P.; Ollivier, C.; Fen-sterbank, L. Angew. Chem., Int. Ed. 2015, 54, 11414.

    7. [7]

      For selected recent examples, see: (a) Slutskyy, Y.; Jamison, C. R.; Zhao, P.; Lee, J.; Rhee, Y. H.; Overman, L. E. J. Am. Chem. Soc. 2017, 139, 7192; (b) Zhang, X.; MacMillan, D. W. C. J. Am. Chem. Soc. 2016, 138, 13862; (c) Lackner, G. L.; Quasdorf, K. W.; Pratsch, G.; Overman, L. E. J. Org. Chem. 2015, 80, 6012; (d) Nawrat, C. C.; Jamison, C. R.; Slutskyy, Y.; MacMillan, D. W. C.; Overman, L. E. J. Am. Chem. Soc. 2015, 137, 11270.

    8. [8]

      The Generation of Aryl Radicals Can be Achieved via the Reductive Cleavage of C(sp2)-N Bonds of the Aryl Diazonium Salts, For a review, see: Ghosh, I.; Marzo, L.; Das, A.; Shaikh, R.; König, B. Acc. Chem. Res. 2016, 49, 1566.

    9. [9]

      (a) Eds.: Pollegioni, L.; Servi, S. Nonnatural Amino Acids: Methods and Protocols, Springer, New York, 2012, pp. 1~249; (b) Ager, D. J. Amino Acids, Peptides and Proteins in Organic Chemistry, Ed.: Hughes, A. B., Wiley-VCH, Weinheim, 2009, Vol. 1, pp. 495~526.

    10. [10]

      Katritzky, A. R.; Gruntz, U.; Kenny, D. H.; Rezende, M. C.; Sheikh, H. J. Chem. Soc. Perkin Trans. 1 1979, 430.

    11. [11]

      Ouyang, K.; Hao, W.; Zhang, W.-X.; Xi, Z. Chem. Rev. 2015, 115, 12045.  doi: 10.1021/acs.chemrev.5b00386

    12. [12]

      (a) Basch, C. H.; Liao, J.; Xu, J.; Piane, J. J.; Watson, M. P. J. Am. Chem. Soc. 2017, 139, 5313; (b) Liao, J.; Guan, W.; Boscoe, B. P.; Tucker, J. W.; Tomlin, J. W.; Garnsey, M. R.; Watson, M. P. Org. Lett. 2018, 20, 3030; (c) Guan, W.; Liao, J.; Watson, M. P. Synthesis 2018, 50, 3231.

    13. [13]

      Grimshaw, J.; Moore, S.; Grimshaw, J. T. Acta Chem. Scand. Ser. B 1983, 37, 485.

    14. [14]

      (a) Klauck, F. J. R.; James, M. J.; Glorius, F. Angew. Chem., Int. Ed. 2017, 56, 12336; (b) Klauck, F. J. R.; Yoon, H.; James, M. J.; Lautens, M.; Glorius, F. ACS Catal. 2019, 9, 236; (c) Sandfort, F.; Strieth-Kalthoff, F.; Klauck, F. J. R.; James, M. J.; Glorius, F. Chem. Eur. J. 2018, 24, 17210.

    15. [15]

      (a) Wu, J.-J.; He, L.; Noble, A.; Aggarwal, V. K. J. Am. Chem. Soc. 2018, 140, 10700; (b) Wu, J.-J.; Grant, P. S.; Li, X.-B.; Noble, A.; Aggarwal, V. K. Angew. Chem., Int. Ed. 2019, 58, 10.1002/anie.201814452.

    16. [16]

      Hu, J.; Wang, G.; Li, S.; Shi, Z. Angew. Chem., Int. Ed. 2018, 57, 15227.  doi: 10.1002/anie.201809608

    17. [17]

      Ociepa, M.; Turkowska, J.; Gryko, D. ACS Catal. 2018, 8, 11362.  doi: 10.1021/acscatal.8b03437

    18. [18]

      (a) Zhu, Z.-F.; Zhang, M.-M.; Liu, F. Org. Biomol. Chem. 2019, 17, 1531; (b) Zhang, M.-M.; Liu, F. Org. Chem. Front. 2018, 5, 3443.

    19. [19]

      Brase, S.; Waegell, B.; de Meijere, A. Synthesis 1998, 2, 148.
       

    20. [20]

      Ikeda, Y.; Nakamura, T.; Yorimitsu, H.; Oshima, K. J. Am. Chem. Soc. 2002, 124, 6514.  doi: 10.1021/ja026296l

    21. [21]

      Tang, S.; Liu, K.; Liu, C.; Lei, A.-W. Chem. Soc. Rev. 2015, 44, 1070.  doi: 10.1039/C4CS00347K

    22. [22]

      For selected recent examples with aliphatic carboxylic acids, see: (a) Cao, H.; Jiang, H.; Feng, H.; Kwan, J. M. C.; Liu, X.; Wu, J. J. Am. Chem. Soc. 2018, 140, 16360; (b) Zhou, H.; Ge, L.; Song, J.; Jian, W.; Li, Y.; Li, C.; Bao, H. iScience 2018, 3, 255; (c) Wang, G.-Z.; Shang, R.; Fu, Y. Org. Lett. 2018, 20, 888; (d) Koy, M.; Sandfort, F.; Tlahuext-Aca, A.; Quach, L.; Daniliuc, C. G.; Glorius, F. Chem. Eur. J. 2018, 24, 4552; (e) Zhu, N.; Zhao, J.; Bao, H. Chem. Sci. 2017, 8, 2081.

    23. [23]

      For selected examples with alkyl halides, see: (a) Xiong, H.; Li, Y.; Qian, B.; Wei, R.; Van der Eycken, E. V.; Bao, H. Org. Lett., 2019, 21, 776; (b) Kurandina, D.; Rivas, M.; Radzhabov, M.; Gevorgyan, V. Org. Lett. 2018, 20, 357; (c) Wang, G.-Z.; Shang, R.; Cheng, W.-M.; Fu, Y. J. Am. Chem. Soc. 2017, 139, 18307; (d) Kurandina, D.; Parasram, M.; Gevorgyan, V. Angew. Chem., Int. Ed. 2017, 56, 14212; (e) Liu, W.; Li, L.; Chen, Z.; Li, C.-J. Org. Biomol. Chem. 2015, 13, 6170; (f) Weiss, M. E.; Kreis, L. M.; Lauber, A.; Carreira, E. M. Angew. Chem., Int. Ed. 2011, 50, 11125; (g) Affo, W. H.; Fujioka, T.; Ikeda, Y.; Nakamura, T.; Yorimitsu, H.; Oshima, K.; Imamura, Y.; Mizuta, T.; Miyoshi, K. J. Am. Chem. Soc. 2006, 128, 8068; (h) Na, Y. G.; Park, S. Y.; Han, S. B.; Han, H.; Ko, S. W.; Chang, S. J. Am. Chem. Soc. 2004, 126, 250.

    24. [24]

      (a) Liu, C.; Tang, S.; Liu, D.; Yuan, J.; Zheng, L.; Meng, L.; Lei, A.-W. Angew. Chem., Int. Ed. 2012, 51, 3638; (b) Nishikata, T.; Noda, Y.; Fujimoto, R.; Sakashita, T. J. Am. Chem. Soc. 2013, 135, 16372; (c) Liu, Q.; Yi, H.; Liu, J.; Yang, Y.-H.; Zhang, X.; Zeng, Z.-Q.; Lei, A.-W. Chem. Eur. J. 2013, 19, 5120.

    25. [25]

      Jiang, X.; Zhang, M.-M.; Xiong, W.; Lu, L.-Q.; Xiao, W.-J. Angew. Chem., Int. Ed. 2019, 58, 2402.  doi: 10.1002/anie.201813689

  • 加载中
    1. [1]

      Tongyan Yu Pan Xu . Visible-Light Photocatalyzed Radical Rearrangement Reaction. University Chemistry, 2025, 40(7): 169-176. doi: 10.12461/PKU.DXHX202409070

    2. [2]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    3. [3]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    4. [4]

      Haitao WangLianglang YuJizhou JiangArramelJing Zou . S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(5): 2305047-0. doi: 10.3866/PKU.WHXB202305047

    5. [5]

      Xuejiao WangSuiying DongKezhen QiVadim PopkovXianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005

    6. [6]

      Hui WangAbdelkader LabidiMenghan RenFeroz ShaikChuanyi Wang . Recent Progress of Microstructure-Regulated g-C3N4 in Photocatalytic NO Conversion: The Pivotal Roles of Adsorption/Activation Sites. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-0. doi: 10.1016/j.actphy.2024.100039

    7. [7]

      Yuanyin CuiJinfeng ZhangHailiang ChuLixian SunKai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-0. doi: 10.3866/PKU.WHXB202405016

    8. [8]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    9. [9]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    10. [10]

      Yadan LuoHao ZhengXin LiFengmin LiHua TangXilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-0. doi: 10.1016/j.actphy.2025.100052

    11. [11]

      Jiawei HuKai XiaAo YangZhihao ZhangWen XiaoChao LiuQinfang Zhang . Interfacial Engineering of Ultrathin 2D/2D NiPS3/C3N5 Heterojunctions for Boosting Photocatalytic H2 Evolution. Acta Physico-Chimica Sinica, 2024, 40(5): 2305043-0. doi: 10.3866/PKU.WHXB202305043

    12. [12]

      Guoqiang ChenZixuan ZhengWei ZhongGuohong WangXinhe Wu . Molten Intermediate Transportation-Oriented Synthesis of Amino-Rich g-C3N4 Nanosheets for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-0. doi: 10.3866/PKU.WHXB202406021

    13. [13]

      Qin HuLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of Electron Bridge and Activation of MoS2 Inert Basal Planes by Ni Doping for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-0. doi: 10.3866/PKU.WHXB202406024

    14. [14]

      Shijie LiKe RongXiaoqin WangChuqi ShenFang YangQinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-0. doi: 10.3866/PKU.WHXB202403005

    15. [15]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    16. [16]

      Tong ZhouXue LiuLiang ZhaoMingtao QiaoWanying Lei . Efficient Photocatalytic H2O2 Production and Cr(Ⅵ) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-0. doi: 10.3866/PKU.WHXB202309020

    17. [17]

      Heng ChenLonghui NieKai XuYiqiong YangCaihong Fang . Remarkable Photocatalytic H2O2 Production Efficiency over Ultrathin g-C3N4 Nanosheet with Large Surface Area and Enhanced Crystallinity by Two-Step Calcination. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-0. doi: 10.3866/PKU.WHXB202406019

    18. [18]

      Qin LiHuihui ZhangHuajun GuYuanyuan CuiRuihua GaoWei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 2402016-0. doi: 10.3866/PKU.WHXB202402016

    19. [19]

      Changjun YouChunchun WangMingjie CaiYanping LiuBaikang ZhuShijie Li . Improved Photo-Carrier Transfer by an Internal Electric Field in BiOBr/N-rich C3N5 3D/2D S-Scheme Heterojunction for Efficiently Photocatalytic Micropollutant Removal. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-0. doi: 10.3866/PKU.WHXB202407014

    20. [20]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

Metrics
  • PDF Downloads(31)
  • Abstract views(2739)
  • HTML views(655)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return