Citation: Kang Shusen, Fan Shaocong, Liu Yan, Wei Yancun, Li Ying, Fang Jingang, Meng Chuizhou. Al-Ion Polymer Solid Electrolyte[J]. Acta Chimica Sinica, ;2019, 77(7): 647-652. doi: 10.6023/A19040119 shu

Al-Ion Polymer Solid Electrolyte

  • Corresponding author: Kang Shusen, kshusen@163.com Meng Chuizhou, 2018108@hebut.edu.cn
  • Received Date: 8 April 2019
    Available Online: 12 July 2019

    Fund Project: Project supported by the Key Research and Development Program in Hebei Province (No. 18394405D)the Key Research and Development Program in Hebei Province 18394405D

Figures(7)

  • Lithium ion batteries have dominated the field of energy storage for portal electronics during the past twenty years, and now it is ambitious to power electric vehicles. However, drawbacks of limited power density and cycle life time as well as cost and safety concerns lead to limitations for the emerging large-scale stationary energy storage application. Therefore, researchers all over the world have been dedicated to find alternative next-generation energy storage technologies. Rechargeable Al-ion battery is emerging as one of the most promising sustainable candidates for the usage of large-scale energy storage because of its low-cost, high charge/discharge rate capability and extremely long cycling life. However, currently most of the Al-ion battery has been developed by using of liquid electrolyte, such as ionic liquid, urea and molten salt electrolyte, which has the risk of electrolyte leakaging. Electrolyte evaporation also occurs when batteries undergo extremely long cycling charge/discharge process. While making all-solid-state Al-ion battery is able to effectively solve the leakaging problem, but there are few reports on this topic. What is more, the all-solid-state Al-ion battery also has higher energy density due to device structure design of using no separators and bulky packaging. In this paper, we have developed a new kind of solid Al-ion electrolyte by using crown ether as both functional additive and coordination group and polyethyleneglycols (PEO) as basement through a solution casting method. Experiment tests indicates that the crown ether could not only yield a good stability and compatibility of Al ions with PEO but also reduce the crystallinity of composite electrolyte, which is helpful for achieving high ion conductivity. The obtained AF solid-state electrolyte has a high ion-conductivity (5.5×10-6 S/cm at room temperature, 1.86×10-3 S/cm at 100℃), broad electrochemical potential window (0~3 V) and strong mechanical property. This work provides applicable high-performance polymer electrolyte and paves the way to develop the full all-solid-state Al-ion batteries.
  • 加载中
    1. [1]

      Masanobu, C.; Hiroki, T.; Shota, M.; Eiji, H.; Hiroshi, I. ACS Appl. Mater. Interfaces 2015, 7, 24385.  doi: 10.1021/acsami.5b06420

    2. [2]

      Jayaprakash, N.; Das, S. K.; Archer, L. A. Chem. Commun. 2011, 47, 12610.  doi: 10.1039/c1cc15779e

    3. [3]

      Wang, W.; Jiang, B.; Xiong, W.; Sun, H.; Lin, Z.; Hu, L.; Tu, J.; Hou, J.; Zhu, H.; Jiao, S. Sci. Rep. 2013, 160, 3383.

    4. [4]

      Liu, S.; Hu, J. J.; Yan, N. F.; Pan, G. L.; Li, G. R.; Gao, X. P. Energy Environ. Sci. 2012, 5, 9743.  doi: 10.1039/c2ee22987k

    5. [5]

      Rani, J. V.; Kanakaiah, V.; Dadmal, T.; Rao, M. S.; Bhavanarushi, S. J. Electrochem. Soc. 2013, 160, A1781.  doi: 10.1149/2.072310jes

    6. [6]

      Hudak, N. S. J. Phys. Chem. C 2014, 118, 5203.

    7. [7]

      Sun, H.; Wang, W.; Yu, Z.; Yuan, Y.; Wang, S.; Jiao, S. Chem. Commun. 2015, 51, 11892.  doi: 10.1039/C5CC00542F

    8. [8]

      Lin, M.; Gong, M.; Lu, B.; Wu, Y.; Wang, D.; Guan, M.; Angell, M.; Chen, C.; Yang, J.; Wang, B.; Dai, H. Nature 2015, 520, 324.  doi: 10.1038/nature14340

    9. [9]

      Chen, C.; Guo, F.; Liu, Y.; Huang, T.; Zheng, B.; Ananth, N.; Xu, Z.; Gao, W.; Gao, C. Adv. Mater. 2017, 1605958.

    10. [10]

      Fu, L.; Li, N.; Liu, Y.; Wang, W.; Zhu, Y.; Wu, Y. Chin. J. Chem. 2017, 35, 13.  doi: 10.1002/cjoc.v35.1

    11. [11]

      Song, S.; Kotobuki, M.; Zheng, F.; Li, Q.; Xu, C.; Wang, Y.; Dong, W.; Li, Z.; Hua, N.; Lu, L. Solid State Ionics 2017, 300, 165.  doi: 10.1016/j.ssi.2016.12.023

    12. [12]

      Sun, X.; Fang, Y.; Jiang, X.; Yoshii, K.; Tsuda, T.; Dai, S. Chem. Commun. 2016, 52, 292.  doi: 10.1039/C5CC06643C

    13. [13]

      Yu, Z.; Jiao, S.; Li, S.; Chen, X.; Song, W.; Teng, T.; Tu, J.; Chen, H.; Zhang, G.; Fang, D. Adv. Funct. Mater. 2018, 1806799.

    14. [14]

      Li, C.; Wang, J.; Chang, Z.; Yin, Y.; Yang, X.; Zhang, X. Scientia Sinica Chimica 2018, 48, 964.
       

    15. [15]

      Nagasubramanian, G.; Stefano, S. D. J. Electrochem. Soc. 1990, 137, 3380.

  • 加载中
    1. [1]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    2. [2]

      Jiandong Liu Zhijia Zhang Mikhail Kamenskii Filipp Volkov Svetlana Eliseeva Jianmin Ma . Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100011-. doi: 10.3866/PKU.WHXB202308048

    3. [3]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    4. [4]

      Tao Jiang Yuting Wang Lüjin Gao Yi Zou Bowen Zhu Li Chen Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057

    5. [5]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    6. [6]

      Aoyu Huang Jun Xu Yu Huang Gui Chu Mao Wang Lili Wang Yongqi Sun Zhen Jiang Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007

    7. [7]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    8. [8]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    9. [9]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    10. [10]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    11. [11]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    12. [12]

      Xuefei Leng Yanshai Wang Hai Wang Shengyang Tao . The In-Depth integration of “Industry-University-Research” in the Exploration and Practice of “Comprehensive Training in Polymer Engineering”. University Chemistry, 2025, 40(4): 66-71. doi: 10.12461/PKU.DXHX202405105

    13. [13]

      Xinxue Li . The Application of Reverse Thinking in Teaching of Boiling Point Elevation and Freezing Point Depression of Dilute Solutions in General Chemistry. University Chemistry, 2024, 39(11): 359-364. doi: 10.3866/PKU.DXHX202401075

    14. [14]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    15. [15]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

    16. [16]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    17. [17]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    18. [18]

      Yu Guo Zhiwei Huang Yuqing Hu Junzhe Li Jie Xu . 钠离子电池中铁基异质结构负极材料的最新研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-. doi: 10.3866/PKU.WHXB202311015

    19. [19]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    20. [20]

      Dongdong Yao JunweiGu Yi Yan Junliang Zhang Yaping Zheng . Teaching Phase Separation Mechanism in Polymer Blends Using Process Representation Teaching Method: A Teaching Design for Challenging Theoretical Concepts in “Polymer Structure and Properties” Course. University Chemistry, 2025, 40(4): 131-137. doi: 10.12461/PKU.DXHX202408125

Metrics
  • PDF Downloads(21)
  • Abstract views(1663)
  • HTML views(388)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return