Citation: Qu Luping, Ren Tong, Wang Ning, Shi Yueli, Zhuang Quanchao. Electrochemical Impedance Spectroscopy Study on the First Sodium Insertion Process of Hard Carbon Material Electrode[J]. Acta Chimica Sinica, ;2019, 77(7): 634-640. doi: 10.6023/A19030103 shu

Electrochemical Impedance Spectroscopy Study on the First Sodium Insertion Process of Hard Carbon Material Electrode

  • Corresponding author: Zhuang Quanchao, zhuangquanchao@126.com
  • Received Date: 29 March 2019
    Available Online: 12 July 2019

Figures(8)

  • In this study, electrochemical impedance spectroscopy (EIS) combined with cyclic volt-ampere (CV), charge-discharge measurement and scanning electron microscope were used. The electrode interface characteristics of hard carbon electrodes for sodium ion batteries in 1 mol/L NaClO4-EC:DEC and 1 mol/L-NaClO4-EC:DEC:PC electrolyte systems were discussed. The hard carbon material electrode is composed of 80 wt% active material, 10 wt% PVDF-HFP adhesive and 10 wt% conductive carbon black. The charge and discharge performance was tested with 2032 button battery and metal sodium sheet as counter electrode, the charge and discharge rate was 0.1 C, and the cut-off voltage was 0~3 V. The three-electrode glass cell system was used for CV and EIS test, and the metal sodium sheet was used as the reference and auxiliary electrode. In the CV test, the scanning speed is 1 mV/s, EIS and the frequency scanning range is 105 to 10-2 Hz. The amplitude of AC signal applied by 2 mV is 5 mV. The electrochemical impedance spectra obtained in the experiment were simulated by Zview software. The results of CV show that the intercalation process of sodium ion in hard carbon materials is mainly divided into two steps, that is, the filling process of sodium ion in nano-pores, the intercalation of sodium ion in graphene layer and the adsorption and desorption of sodium ion on the surface or defect. The filling process of sodium ion in the nanoporous is accompanied by the formation of solid electrolyte interface (SEI) film on the surface of the electrode. The results of electrochemical impedance spectroscopy show that the spectrum consists of two semicircles and a oblique line, which can be attributed to the contact impedance, the diffusion of sodium ions through SEI film and the process of charge transfer. The oblique domain reflects the oblique line related to the solid diffusion of sodium ion in the particles of hard carbon materials. By selecting the appropriate equivalent circuit and fitting the experimental results, we can get the variation of SEI film resistance and electron resistance with the electrode polarization potential in the process of sodium insertion in the first week of the hard carbon electrode.
  • 加载中
    1. [1]

      Tarascon, J. M. Nat. Chem. 2010, 2, 510.  doi: 10.1038/nchem.680

    2. [2]

      Xiang, X. D.; Lu, Y. Y.; Chen, J. Acta Chim. Sinica 2017, 75, 154.
       

    3. [3]

      Vikström, H.; Davidsson, S.; Höök, M. Appl. Energy 2013, 110, 252.  doi: 10.1016/j.apenergy.2013.04.005

    4. [4]

      Kundu, D.; Talaie, E.; Duffort, V.; Nazar, L. F. Angew. Chem., Int. Ed. 2015, 54, 3431.  doi: 10.1002/anie.201410376

    5. [5]

      Li, H.; Wang, Z.; Chen, L.; Huang, X. Adv. Mater. 2009, 21, 4593.  doi: 10.1002/adma.v21:45

    6. [6]

      Komaba, S.; Murata, W.; Ishikawa, T.; Yabuuchi, N.; Ozeki, T.; Nakayama, T.; Ogata, A.; Gotoh, K.; Fujiwara, K. Adv. Funct. Mater. 2011, 21, 3859.  doi: 10.1002/adfm.v21.20

    7. [7]

      Zhang, S. W.; Zhang, J.; Wu, S. D.; Lv, W.; Kang, F. Y.; Yang, Q. H. Acta Chim. Sinica 2017, 75, 163.  doi: 10.11862/CJIC.2017.023
       

    8. [8]

      Wang, L.; Yang, G. R.; Wang, J. N.; Wang, S. L.; Peng, S. J.; Yan, W. Acta Chim. Sinica 2018, 76, 666.  doi: 10.3969/j.issn.0253-2409.2018.06.004
       

    9. [9]

      Narayanrao, R.; Joglekar, M.; Inguva, S. J. Electrochem. Soc. 2013, 160, A125.  doi: 10.1149/2.013302jes

    10. [10]

      Lin, X.; Park, J.; Liu, L.; Lee, Y.; Sastry, A.; Lu, W. J. Electrochem. Soc. 2013, 160, A1701.  doi: 10.1149/2.040310jes

    11. [11]

      Pinson, M. B.; Bazant, M. Z. J. Electrochem. Soc. 2013, 160, A243.  doi: 10.1149/2.044302jes

    12. [12]

      Xu, K. Chem. Rev. 2014, 114, 11503.  doi: 10.1021/cr500003w

    13. [13]

      Zhuang, Q. C.; Xu, S. D.; Qiu, X. Y.; Cui, Y. L.; Fang, L.; Sun, S. G. Prog. Chem. 2010, 22, 1044.
       

    14. [14]

      Qin, Y. P.; Zhuang, Q. C.; Shi, Y. L.; Jiang, L.; Sun, Z.; Sun, S. G. Prog. Chem. 2011, 23, 390.

    15. [15]

      Qiu, X. Y.; Zhuang, Q. C.; Zhang, Q. Q.; Cao, R.; Ying, P. Z.; Qiang, Y. H.; Sun, S. G. Phys. Chem. Chem. Phys. 2012, 14, 2617.  doi: 10.1039/c2cp23626e

    16. [16]

      Zhuang, Q. C.; Wei, T.; Du, L. L.; Cui, Y. L.; Fang, L.; Sun, S. G. J. Phys. Chem. C 2010, 114, 8614.  doi: 10.1021/jp9109157

    17. [17]

      Qiu, X. Y.; Zhuang, Q. C.; Zhang, Q. Q.; Cao, R.; Qiang, Y. H.; Ying, P. Z.; Sun, S. G. J. Electroanal. Chem. 2012, 687, 35.  doi: 10.1016/j.jelechem.2012.09.027

    18. [18]

      Wei, T.; Zhuang, Q. C.; Wu, C.; Cui, Y. L.; Fang, L.; Sun, S. G. Acta Chim. Sinica 2010, 68, 1481.  doi: 10.3866/PKU.WHXB20100621
       

    19. [19]

      Zhuang, Q. C.; Wei, T.; Wei, G. Z.; Dong, Q. F.; Sun, S. G. Acta Chim. Sinica 2009, 67, 2184.
       

    20. [20]

      Zheng, M.; Liu, Y.; Xiao, Y.; Zhu, Y.; Guan, Q.; Yuan, D.; Zhang, J. J. Phys. Chem. C 2009, 113, 8455.  doi: 10.1021/jp811356a

    21. [21]

      Cao, Y.; Xiao, L.; Sushko, M. L.; Wang, W.; Schwenzer, B.; Xiao, J.; Nie, Z.; Saraf, L. V.; Yang, Z.; Liu, J. Nano Lett. 2012, 12, 3783.  doi: 10.1021/nl3016957

    22. [22]

      Li, Y.; Hu, Y. S.; Titirici, M. M.; Chen, L.; Huang, X. Adv. Energy Mater. 2016, 6, 1600659.  doi: 10.1002/aenm.201600659

    23. [23]

      Liu, P.; Li, Y.; Hu, Y. S.; Li, H.; Chen, L.; Huang, X. J. Mater. Chem. A 2016, 4, 13046.  doi: 10.1039/C6TA04877C

    24. [24]

      Holzapfel, M.; Martinent, A.; Alloin, F.; Le Gorrec, B.; Yazami, R.; Montella, C. J. Electroanal. Chem. 2003, 546, 41.  doi: 10.1016/S0022-0728(03)00144-X

    25. [25]

      Chang, Y. C.; Sohn, H. J. J. Electrochem. Soc. 2000, 147, 50.  doi: 10.1149/1.1393156

    26. [26]

      Levi, M.; Aurbach, D. J. Phys. Chem. B 1997, 101, 4630.  doi: 10.1021/jp9701909

    27. [27]

      Xu, S. D.; Zhuang, Q. C.; Tian, L. L.; Qin, Y. P.; Fang, L.; Sun, S. G. J. Phys. Chem. C 2011, 115, 9210.  doi: 10.1021/jp107406s

    28. [28]

      Zhuang, Q. C.; Li, J.; Tian, L. L. J. Power Sources 2013, 222, 177.  doi: 10.1016/j.jpowsour.2012.08.050

  • 加载中
    1. [1]

      Yuyao WangZhitao CaoZeyu DuXinxin CaoShuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2406014-0. doi: 10.3866/PKU.WHXB202406014

    2. [2]

      Zhuo WangXue BaiKexin ZhangHongzhi WangJiabao DongYuan GaoBin Zhao . MOF-Templated Synthesis of Nitrogen-Doped Carbon for Enhanced Electrochemical Sodium Ion Storage and Removal. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-0. doi: 10.3866/PKU.WHXB202405002

    3. [3]

      Jianbao MeiBei LiShu ZhangDongdong XiaoPu HuGeng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5−xMn0.5V1.5−xZrx (PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-0. doi: 10.3866/PKU.WHXB202407023

    4. [4]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    5. [5]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    6. [6]

      Xue XiaoJiachun LiXiangtong MengJieshan Qiu . Sulfur-Doped Carbon-Coated Fe0.95S1.05 Nanospheres as Anodes for High-Performance Sodium Storage. Acta Physico-Chimica Sinica, 2024, 40(6): 2307006-0. doi: 10.3866/PKU.WHXB202307006

    7. [7]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    8. [8]

      Kun Xu Xinxin Song Zhilei Yin Jian Yang Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050

    9. [9]

      Yu GuoZhiwei HuangYuqing HuJunzhe LiJie Xu . Recent Advances in Iron-based Heterostructure Anode Materials for Sodium Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-0. doi: 10.3866/PKU.WHXB202311015

    10. [10]

      Zilin HuYaoshen NiuXiaohui RongYongsheng Hu . Suppression of Voltage Decay through Ni3+ Barrier in Anionic-Redox Active Cathode for Na-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306005-0. doi: 10.3866/PKU.WHXB202306005

    11. [11]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    12. [12]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    13. [13]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    14. [14]

      Qi LiPingan LiZetong LiuJiahui ZhangHao ZhangWeilai YuXianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-0. doi: 10.3866/PKU.WHXB202311030

    15. [15]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    16. [16]

      Huirong BAOJun YANGXiaomiao FENG . Preparation and electrochemical properties of NiCoP/polypyrrole/carbon cloth by electrodeposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1083-1093. doi: 10.11862/CJIC.20250008

    17. [17]

      Xuechen HuQiuying XiaFan YueXinyi HeZhenghao MeiJinshi WangHui XiaXiaodong Huang . Electrochemical Characteristics of LiNbO3 Anode Film and Its Applications in All-Solid-State Thin-Film Lithium-Ion Battery. Acta Physico-Chimica Sinica, 2024, 40(2): 2309046-0. doi: 10.3866/PKU.WHXB202309046

    18. [18]

      Qianli MaTianbing SongTianle HeXirong ZhangHuanming Xiong . Sulfur-doped carbon dots: a novel bifunctional electrolyte additive for high-performance aqueous zinc-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100106-0. doi: 10.1016/j.actphy.2025.100106

    19. [19]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    20. [20]

      Chaolin MiYuying QinXinli HuangYijie LuoZhiwei ZhangChengxiang WangYuanchang ShiLongwei YinRutao Wang . Galvanic Replacement Synthesis of Graphene Coupled Amorphous Antimony Nanoparticles for High-Performance Sodium-Ion Capacitor. Acta Physico-Chimica Sinica, 2024, 40(5): 2306011-0. doi: 10.3866/PKU.WHXB202306011

Metrics
  • PDF Downloads(70)
  • Abstract views(3069)
  • HTML views(750)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return