Citation: Lin Fengguirong, Liang Yujie, Li Xinyao, Song Song, Jiao Ning. Copper-catalyzed ortho C-H Azidation of Anilines Using Molecular Oxygen as Terminal Oxidant[J]. Acta Chimica Sinica, ;2019, 77(9): 906-910. doi: 10.6023/A19020070 shu

Copper-catalyzed ortho C-H Azidation of Anilines Using Molecular Oxygen as Terminal Oxidant

  • Corresponding author: Jiao Ning, jiaoning@pku.edu.cn
  • Received Date: 27 February 2019
    Available Online: 22 September 2019

    Fund Project: the National Natural Science Foundation of China 21632001the National Natural Science Foundation of China 21772002Project supported by the National Natural Science Foundation of China (Nos. 21632001, 21772002)

Figures(3)

  • Organic azides are widely used in chemical synthesis, drug discovery, bioconjugation, and material science, owing to their flexible transformations to useful chemicals such as amines, amides, isocyanates and heterocycles. In light of the diverse value of azide-containing compounds, numerous synthetic methods have been established to access this significant functionality. Among them, direct C-H azidation reactions have attracted particular attention due to their cost-and atom-efficiency. Previous methods for the preparation of azido-substituted anilines require the employment of stoichiometric amount of harsh oxidants such as hyperoxides and hypervalent iodine reagents. To synthesize these valuable compounds in an economical and environmentally benign manner, a simple and efficient copper-catalyzed ortho C-H azidation of anilines using molecular oxygen as terminal oxidant has been developed. The reaction proceeded smoothly with the assistance of pyridine at room temperature, and afforded the synthetically useful azido-substituted anilines in moderate to good yields. Notably, the process of dehydrogenation coupling of anilines to azo compounds was significantly suppressed in this protocol. This method allows for the highly regioselective formation of C-N3 bonds under mild reaction conditions, and exhibits good functional group and substrate scope compatibility. A general procedure for the azidation of anilines is as follows:a mixture of aniline (0.4 mmol) and CuBr (5.7 mg, 0.04 mmol) is loaded in a 20 mL Schlenk tube, which is equipped with a magnetic stir bar and subjected to evacuation/flushing with oxygen three times. Subsequently, DCM (4.0 mL), pyridine (6.3 mg, 0.08 mmol) and TMSN3 (92.2 mg, 0.8 mmol) are added to the Schlenk tube via syringe, and the formed mixture is stirred at room temperature until the amount of target product no longer increases, which is monitored by TLC. After completion of the reaction, the solution is concentrated under vacuum and further purified by column chromatography on silica gel to give the desired product (eluent:petroleum ether/ethyl acetate).
  • 加载中
    1. [1]

    2. [2]

    3. [3]

    4. [4]

      Grieb, P. Philos. Trans. R. Soc. Lond. 1864, 13, 377.

    5. [5]

      (a) He, Z.; Bae, M.; Wu, J.; Jamison, T. F. Angew. Chem., Int. Ed. 2014, 53, 14451; (b) Xie, F.; Qi, Z.; Li, X. Angew. Chem. Int. Ed. 2013, 52, 11862; (c) Dou, Y.; Xie, Z.; Sun, Z.; Fang, H.; Shen, C.; Zhang, P.; Zhu, Q. ChemCatChem 2016, 8, 3570; (d) Hussain, M. K.; Ansari, M. I.; Kant, R.; Hajela, K. Org. Lett. 2014, 16, 560; (e) Azad, C. S.; Narula, A. K. RSC Adv. 2015, 5, 100223; (f) Yan, Y.-M.; Gao, Y.; Ding, M.-W. Tetrahedron 2016, 72, 5548; (g) Yamamoto, K.; Kamino, S.; Sawada, D. Tetrahedron Lett. 2017, 58, 3936; (h) Dhineshkumar, J.; Gadde, K.; Prabhu, K. R. J. Org. Chem. 2018, 83, 228; (i) Dou, Y.; Yin, B.; Zhang, P.; Zhu, Q. Eur. J. Org. Chem. 2018, 2018, 4571.

    6. [6]

      Tang, C.; Jiao, N. J. Am. Chem. Soc. 2012, 134, 18924.  doi: 10.1021/ja3089907

    7. [7]

      Fan, Y.; Wan, W.; Ma, G.; Gao, W.; Jiang, H.; Zhu, S.; Hao, J. Chem. Commun. 2014, 50, 5733.  doi: 10.1039/C4CC01481B

    8. [8]

      Fang, H.; Dou, Y.; Ge, J.; Chhabra, M.; Sun, H.; Zhang, P.; Zheng, Y.; Zhu, Q. J. Org. Chem. 2017, 82, 11212.  doi: 10.1021/acs.joc.7b01594

    9. [9]

      (a) Liang, Y.-F.; Wu, K.; Liu, Z.; Wang, X.; Liang, Y.; Liu, C.; Jiao, N. Sci. China Chem. 2015, 58, 1334; (b) Huang, X.; Li, X.; Zou, M.; Song, S.; Tang, C.; Yuan, Y.; Jiao, N. J. Am. Chem. Soc. 2014, 136, 14858; (c) Liang, Y.; Jiao, N. Angew. Chem. Int. Ed. 2016, 55, 4035; (d) Shi, Z.; Zhang, C.; Li, S.; Pan, D.; Ding, S.; Cui, Y.; Jiao, N. Angew. Chem. Int. Ed. 2009, 48, 4572; (e) Song, S.; Zhang, Y.; Yeerlan, A.; Zhu, B.; Liu, J.; Jiao, N. Angew. Chem. Int. Ed. 2017, 56, 2487; (f) Zhang, C.; Xu, Z.; Zhang, L.; Jiao, N. Angew. Chem. Int. Ed. 2011, 50, 11088; (g) Li, X.; Jiao, N. Chin. J. Chem. 2017, 35, 1349.

    10. [10]

    11. [11]

      (a) Zhang, C.; Jiao, N. Angew. Chem. Int. Ed. 2010, 49, 6174; (b) Lu, W.; Xi, C. Tetrahedron Lett. 2008, 49, 4011; (c) Wang, J.; He, J.; Zhi, C.; Luo, B.; Li, X.; Pan, Y.; Cao, X.; Gu, H. RSC Adv. 2014, 4, 16607.

    12. [12]

    13. [13]

      Lin, W.; Zhang, X.; He, Z.; Jin, Y.; Gong, L.; Mi, A. Synth. Commun. 2002, 32, 3279.  doi: 10.1081/SCC-120014032

  • 加载中
    1. [1]

      Pengzi Wang Wenjing Xiao Jiarong Chen . Copper-Catalyzed C―O Bond Formation by Kharasch-Sosnovsky-Type Reaction. University Chemistry, 2025, 40(4): 239-244. doi: 10.12461/PKU.DXHX202406090

    2. [2]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    3. [3]

      Lanjun Cheng Xinyuan Wang Jie An Xiang Wu Chengfeng Zhu Yanming Fu Yougui Li . Improvement of the Resolution Experiment of Racemic Tartaric Acid. University Chemistry, 2025, 40(7): 277-285. doi: 10.12461/PKU.DXHX202408010

    4. [4]

      Xue-Peng Zhang Yuchi Long Yushu Pan Jiding Wang Baoyu Bai Rui Ding . 定量构效关系方法学习探索:以钴卟啉活化氧气为例. University Chemistry, 2025, 40(8): 345-359. doi: 10.12461/PKU.DXHX202410107

    5. [5]

      Zhuoyan LvYangming DingLeilei KangLin LiXiao Yan LiuAiqin WangTao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 2408015-0. doi: 10.3866/PKU.WHXB202408015

    6. [6]

      Xia ZHANGYushi BAIXi CHANGHan ZHANGHaoyu ZHANGLiman PENGShushu HUANG . Preparation and photocatalytic degradation performance of rhodamine B of BiOCl/polyaniline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 913-922. doi: 10.11862/CJIC.20240255

    7. [7]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    8. [8]

      Dong XiangKunzhen LiKanghua MiaoRan LongYujie XiongXiongwu Kang . Amine-Functionalized Copper Catalysts: Hydrogen Bonding Mediated Electrochemical CO2 Reduction to C2 Products and Superior Rechargeable Zn-CO2 Battery Performance. Acta Physico-Chimica Sinica, 2024, 40(8): 2308027-0. doi: 10.3866/PKU.WHXB202308027

    9. [9]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    10. [10]

      Xue DongXiaofu SunShuaiqiang JiaShitao HanDawei ZhouTing YaoMin WangMinghui FangHaihong WuBuxing Han . Electrochemical CO2 Reduction to C2+ Products with Ampere-Level Current on Carbon-Modified Copper Catalysts. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-0. doi: 10.3866/PKU.WHXB202404012

    11. [11]

      Li Jiang Changzheng Chen Yang Su Hao Song Yanmao Dong Yan Yuan Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002

    12. [12]

      Yuanyuan Ping Wangqing Kong . 光催化碳氢键官能团化合成1-苯基-1,2-乙二醇. University Chemistry, 2025, 40(6): 238-247. doi: 10.12461/PKU.DXHX202408092

    13. [13]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    14. [14]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    15. [15]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    16. [16]

      Ke LiChuang LiuJingping LiGuohong WangKai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009

    17. [17]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    18. [18]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    19. [19]

      Jingzhao ChengShiyu GaoBei ChengKai YangWang WangShaowen Cao . Construction of 4-Amino-1H-imidazole-5-carbonitrile Modified Carbon Nitride-Based Donor-Acceptor Photocatalyst for Efficient Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-0. doi: 10.3866/PKU.WHXB202406026

    20. [20]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

Metrics
  • PDF Downloads(13)
  • Abstract views(1697)
  • HTML views(435)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return