Citation: Wang Shan, Fan Xiaoyong, Cui Yu, Gou Lei, Wang Xingang, Li Donglin. Three-dimensional Porous Current Collector for Lithium Storage Enhancement of NiO Electrode[J]. Acta Chimica Sinica, ;2019, 77(6): 551-558. doi: 10.6023/A19020057 shu

Three-dimensional Porous Current Collector for Lithium Storage Enhancement of NiO Electrode

  • Corresponding author: Fan Xiaoyong, xyfan@chd.edu.cn Li Donglin, dlli@chd.edu.cn
  • Received Date: 3 February 2019
    Available Online: 20 June 2019

    Fund Project: the National Natural Science Foundation of China 21473014the Special Fund for Basic Scientific Research of Central Colleges, Chang'an University, China 310831153505the China Postdoctoral Science Foundation 2016M590908Project supported by the National Natural Science Foundation of China (No. 21473014), the China Postdoctoral Science Foundation (No. 2016M590908) and the Special Fund for Basic Scientific Research of Central Colleges, Chang'an University, China (Grant No. 310831153505)

Figures(12)

  • Three-dimensional (3D) porous metals have been applied as current collector to improve the cycle stability and high-rate capacities of lithium-ion battery due to they can accommodate volumetric changes of electrodes during lithium storage, and provide rapid transfer channels for lithium ions. NiO has attracted more and more attention due to its high theoretical specific capacity as anode of lithium-ion battery. However its low electrical conductivity and large volumetric changes during electrochemical cycling result in poor cyclability and low high-rate capacity. Besides, the large first irreversible capacity causing from the low reaction activity between the first lithiation products Ni0 and Li2O, hinders its commercial application. In this work, we produce 3D porous Cu with interconnected pores (ca. 5 μm) by a facile and scalable electroless plating method and investigate its role on electrochemical storage improvement for NiO electrode. NiO@3D porous Cu is produced by electrodepositing Ni(OH)2 film coupled with sequential high temperature with 3D porous Cu as the substrate. The NiO film deposited on the 3D porous Cu has mesoporous structure. This unique architecture can provide rapid transfer channels for lithium-ion battery and free place for accommodating volumetric changes of NiO during electrochemical cycling, meanwhile increases reactive points for Ni0 and Li2O. Thus, this electrode demonstrates excellent high-rate capacity and high first columbic efficiency. The first discharge and charge capacities at 200 mA·g-1 are 1522.3 and 1230.2 mAh·g-1 respectively with high columbic efficiency of 80.8%. The same electrode shows high capacity of 578 mAh·g-1 at high current density of 20 A·g-1, which is 48.8% of that at 0.2 A·g-1. The electrochemical impedance spectra (EIS) demonstrate the NiO@3D porous Cu electrode has smaller charge transfer resistance and large Li-ion diffusion efficiency compared with NiO@Cu foil. The SEM images show that the NiO@3D porous Cu electrode suffered 100 cycles remains well 3D porous structure. A full cell is assembled using NiO@3D porous Cu as negative electrode and LiNi1/3Co1/3Mn1/3O2 as positive electrode. The full cell delivers first charge and discharge capacities of 1514 and 1060 mAh·g-1 respectively at 0.2 A·g-1 (based on NiO) with a coulomb efficiency of 70%, a first discharge capacity of 873 mAh·g-1 at 1.0 A·g-1 with 709 mAh·g-1 remained after 100 cycles (the retention is 81%). This work may offer an effective method for lithium storage enhancement of transition metal oxides.
  • 加载中
    1. [1]

      Guo, Y.-G.; Hu, J.-S.; Wan, L.-J. Adv. Mater. 2008, 20, 2878.  doi: 10.1002/adma.v20:15

    2. [2]

      Xia, L.; Yu, L.-P.; Hu, D.; Chen, Z. Acta Chim. Sinica 2017, 75, 173.  doi: 10.7503/cjcu20160462
       

    3. [3]

      Liang, C.; Gao, M.-X; Pan, H.; Liu, Y.; Yan, M. J. Alloys Compd. 2013, 575, 246.  doi: 10.1016/j.jallcom.2013.04.001

    4. [4]

      Yu, P.; Liu, X.; Wang, L.; Tian, C.-G.; Yu, H.-T.; Fu, H. ACS Sustainable Chem. Eng. 2017, 5, 11238.  doi: 10.1021/acssuschemeng.7b01640

    5. [5]

      Chang, S.-L.; Liang, F.; Yao, Y.-C.; Ma, W.-H.; Yang, B.; Dai, Y.-N. Acta Chim. Sinica 2018, 76, 515.  doi: 10.11862/CJIC.2018.038
       

    6. [6]

      Zhao, T. P.; Gao, D. S.; Lei, G. T.; Li, Z. H. Acta Chim. Sinica 2009, 67, 1957.  doi: 10.3321/j.issn:0567-7351.2009.17.003
       

    7. [7]

      Wang, X.; Qiao, L.; Sun, X.; Li, X.; Hu, D.; Zhang, Q.; He, D.-Y. J. Mater. Chem. A 2013, 1, 4173.  doi: 10.1039/c3ta01640d

    8. [8]

      Wen, W.; Wu, J.-M.; Cao, M.-H. Nano Energy 2013, 2, 1383.  doi: 10.1016/j.nanoen.2013.07.002

    9. [9]

      Wen, W.; Wu, J.-M.; Cao, M.-H. J. Mater. Chem. A 2013, 1, 3881.  doi: 10.1039/c3ta01626a

    10. [10]

      Kang, C.; Cha, E.; Lee, S. H.; Choi, W. RSC Adv. 2018, 8, 7414.  doi: 10.1039/C7RA10987C

    11. [11]

      Oh, S. H.; Park, J.-S.; Jo, M. S.; Kang, Y. C.; Cho, J. S. Chem. Eng. J. 2018, 347, 889.  doi: 10.1016/j.cej.2018.04.156

    12. [12]

      Zhang, Y.-H.; Wang, Z.-Y.; Shi, C.-S.; Liu, E.-Z.; He, C.-N.; Zhao, N.-J. Acta Phys.-Chim. Sin. 2015, 31, 268.  doi: 10.3866/PKU.WHXB201411261

    13. [13]

      Sun, X.; Yan, C.-L; Chen, Y.; Si, W.; Deng, J.; Oswald, S.; Liu, L.; Schmidt, O. G. Adv. Eng. Mater. 2014, 4, 1300912.  doi: 10.1002/aenm.201300912

    14. [14]

      Lv, P.; Zhao, H.-L; Zeng, Z.; Gao, C.; Liu, X.; Zhang, T. Appl. Surf. Sci. 2015, 329, 301.  doi: 10.1016/j.apsusc.2014.12.170

    15. [15]

      Ma, J.; Yin, L.-W.; Ge, T. CrystEngComm 2015, 17, 9336.  doi: 10.1039/C5CE00818B

    16. [16]

      Yu, P.; Wang, L.; Sun, F.; Zhao, D.; Tian, C.; Zhao, L.; Liu, X.; Wang, J.-Q.; Fu, H.-G. Chem. Eur. J. 2015, 21, 3249.  doi: 10.1002/chem.201406188

    17. [17]

      Vlad, A.; Antohe, V.-A.; Martinez-Huerta, J. M.; Ferain, E.; Gohy, J.-F.; Piraux, L. J. Mater. Chem A 2016, 4, 1603.  doi: 10.1039/C5TA10639G

    18. [18]

      Park, G.-D.; Hong, J.-H.; Park, S. K.; Kang, Y. C. Appl. Surf. Sci. 2019, 464, 597.  doi: 10.1016/j.apsusc.2018.09.122

    19. [19]

      Fan, Z.; Liang, J.; Yu, W.; Ding, S.-J.; Cheng, S.; Yang, G.; Wang, Y.; Xi, Y.; Xi, K.; Kumar, R. V. Nano Energy 2015, 16, 152.  doi: 10.1016/j.nanoen.2015.06.009

    20. [20]

      Liang, J.; Hu, H.; Park, H.; Xiao, C.; Ding, S.-J.; Paik, U.; Lou, X. W. Eng. Environ. Sci. 2015, 8, 1707.

    21. [21]

      Park, S. K.; Choi, J. H.; Kang, Y. C. Chem. Eng. J. 2018, 354, 327.  doi: 10.1016/j.cej.2018.08.018

    22. [22]

      Zou, F.; Chen, Y. M.; Liu, K.; Yu, Z.; Liang, W.; Bhaway, S. M.; Gao, M.; Zhu, Y. ACS Nano 2016, 10, 377.  doi: 10.1021/acsnano.5b05041

    23. [23]

      Hien, V.-X.; Vuong, D. D.; Chien, N. D.; Heo, Y.-W. Mater. Chem. Phys. 2018, 217, 74.  doi: 10.1016/j.matchemphys.2018.06.054

    24. [24]

      Jiang, J.; Ma, C.; Yang, Y.; Ding, J.; Ji, H.; Shi, S.; Yang, G. Appl. Surf. Sci. 2018, 441, 232.  doi: 10.1016/j.apsusc.2018.02.053

    25. [25]

      Long, H.; Shi, T.; Hu, H.; Jiang, S.; Xi, S.; Tang, Z.-R. Sci. Rep. 2014, 4, 7413.

    26. [26]

      Meng, X.; Deng, D. Chem. Eng. Sci. 2019, 194, 134.  doi: 10.1016/j.ces.2018.06.038

    27. [27]

      Xia, Y.; Sun, B.; Zhu, S.; Mao, S.; Li, X.; Guo, B.; Zeng, Y.; Wang, H.; Zhao, Y. J. Solid State Chem. 2019, 269, 132.  doi: 10.1016/j.jssc.2018.09.024

    28. [28]

      Hu, N.; Tang, Z.; Shen, P. K. RSC. Adv. 2018, 8, 26589.  doi: 10.1039/C8RA03599G

    29. [29]

      Fan, X.-Y.; Han, J.-X; Jiang, Y.; Ni, J.; Gou, L.; Li, D.-L.; Li, L. ACS Appl. Energy Mater. 2018, 1, 3598.  doi: 10.1021/acsaem.8b00872

    30. [30]

      Fan, X.-Y; Shi, Y.; Gou, L.; Li, D. Electrochim. Acta 2014, 142, 268.  doi: 10.1016/j.electacta.2014.08.003

    31. [31]

      Sun, C.; Yang, J.; Rui, X.; Zhang, W.; Yan, Q.; Chen, P.; Huo, F.; Huang, W.; Dong, X. C. J. Mater. Chem. A 2015, 3, 8483.  doi: 10.1039/C5TA00455A

    32. [32]

      Feng, Y.; Zhang, H.; Li, W.; Fang, L.; Wang, Y. J. Power Sources 2016, 301, 78.  doi: 10.1016/j.jpowsour.2015.09.101

    33. [33]

      Yang, W.; Cheng, G.; Dong, C.; Bai, Q.; Chen, X.; Peng, Z.; Zhang, Z.-H. J. Mater. Chem. A 2014, 2, 20022.  doi: 10.1039/C4TA04809A

    34. [34]

      Ni, S.; Lv, X.; Ma, J.; Yang, X.-L.; Zhang, L. J. Power Sources 2014, 270, 564.  doi: 10.1016/j.jpowsour.2014.07.137

    35. [35]

      Hu, Y.; Wei, J.; Liang, Y.; Zhang, H.; Zhang, X.; Shen, W.; Wang, H.-T. Angew. Chem. Int. Ed. 2016, 55, 2048.  doi: 10.1002/anie.201509213

    36. [36]

      Wu, J.; Yin, W. J.; Liu, W.-W.; Guo, P.; Liu, G.; Liu, X.; Geng, D.; Lau, W.-M.; Liu, H.; Liu, L. M. J. Mater. Chem. A 2016, 4, 10940.  doi: 10.1039/C6TA03137D

    37. [37]

      Kvasha, A.; Azaceta, E.; Leonet, O.; Bengoechea, M.; Boyano, I.; Tena-Zaera, R.; Meatza, I. d.; Miguel, O.; Grande, H.-J.; Blazquez, J. A. Electrochim. Acta 2015, 180, 16.  doi: 10.1016/j.electacta.2015.08.030

    38. [38]

      Yan, X.-Y.; Tong, X.; Wang, J.; Gong, C.; Zhang, M.; Liang, L. J. Alloys Compd. 2013, 556, 561.

    39. [39]

      Fan, X.-Y.; Zhuang, Q.-C.; Wei, G.-Z.; Ke, F.-S.; Huang, L.; Dong, Q.-F.; Sun, S.-G. Acta Chim. Sinica 2009, 67, 1547.  doi: 10.3321/j.issn:0567-7351.2009.14.003
       

    40. [40]

      Fan, X.-Y.; Shi, Y.-X.; Cui, Y.; Li, D.-L.; Gou, L. Ionics 2015, 21, 1909.  doi: 10.1007/s11581-015-1372-8

  • 加载中
    1. [1]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    2. [2]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    3. [3]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    4. [4]

      Aoyu Huang Jun Xu Yu Huang Gui Chu Mao Wang Lili Wang Yongqi Sun Zhen Jiang Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007

    5. [5]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    6. [6]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    7. [7]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    8. [8]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    9. [9]

      Yang LIULijun WANGHongyu WANGZhidong CHENLin SUN . Surface and interface modification of porous silicon anodes in lithium-ion batteries by the introduction of heterogeneous atoms and hybrid encapsulation. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 773-785. doi: 10.11862/CJIC.20250015

    10. [10]

      Zhiyuan TONGZiyuan LIKe ZHANG . Three-dimensional porous collector based on Cu-Li6.4La3Zr1.4Ta0.6O12 composite layer for the construction of stable lithium metal anode. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 499-508. doi: 10.11862/CJIC.20240238

    11. [11]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    12. [12]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    13. [13]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    14. [14]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    15. [15]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    16. [16]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    17. [17]

      Yu Guo Zhiwei Huang Yuqing Hu Junzhe Li Jie Xu . 钠离子电池中铁基异质结构负极材料的最新研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-. doi: 10.3866/PKU.WHXB202311015

    18. [18]

      Jiaxuan Zuo Kun Zhang Jing Wang Xifei Li . 锂离子电池Ni-Co-Mn基正极材料前驱体的形核调控及机制. Acta Physico-Chimica Sinica, 2025, 41(1): 2404042-. doi: 10.3866/PKU.WHXB202404042

    19. [19]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    20. [20]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

Metrics
  • PDF Downloads(7)
  • Abstract views(1763)
  • HTML views(425)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return