Citation: Feng Tingting, Gao Shouqin, Wang Kun. Colorimetric Sensing of Prostate Specific Membrane Antigen Based on Gold Nanoparticles[J]. Acta Chimica Sinica, ;2019, 77(5): 422-426. doi: 10.6023/A19010018 shu

Colorimetric Sensing of Prostate Specific Membrane Antigen Based on Gold Nanoparticles

  • Corresponding author: Feng Tingting, tingtingfeng1985@126.com
  • Received Date: 9 January 2019
    Available Online: 26 May 2019

    Fund Project: the Doctoral Research Start-up Fund of Shanxi University of Chinese Medicine 2014BL19Project supported by the Doctoral Research Start-up Fund of Shanxi University of Chinese Medicine (No. 2014BL19)

Figures(6)

  • Cancer is a major cause of death and its early diagnosis has been a research goal for many decades. For males, prostatic carcinoma has become the second leading cause of cancer death worldwide. Prostate specific membrane antigen (PSMA) has been widely recognized as a prostate cancer marker. Thus, measurement of PSMA would be more valuable for the early diagnosis of prostate cancer. Nanomaterials have the characteristics of small size effect, quantum size effect, macroscopic quantum tunneling effect and surface effect, and have been widely used in various fields, such as cell imaging, analysis and detection, drug release and treatment. Gold nanoparticles have been widely used in biosensing and medical diagnosis due to their simple preparation, high stability and unique photoelectric properties. In this paper, a new colorimetric approach is proposed for simple detection of PSMA based on gold nanoparticles. In the experiment, we synthesized gold nanoparticles with positive charges, and the polyanionic peptide as the substrate of PSMA. The detection of PSMA was based on the property that different aggregation states of gold nanoparticles can lead to the change of color and the specific recognition of PSMA for its substrate. The positively charged gold nanoparticles interact electrostatically with polyanionic peptide, resulting in aggregation of gold nanoparticles. In the presence of PSMA, however, the polyanionic peptide are hydrolyzed into glutamic acid fragment due to the reaction between the PSMA and the polyanionic peptide, resulting in the dispersion of gold nanoparticles. This behaviour leads to the development of a rapid and simple colorimetric method for assaying PSMA activity, with a detection limit of 0.5 nmol/L and the linear range of 2~10 nmol/L. This approach is simple compared to the existing ones since the gold nanoparticles-peptide based sensor is easy to be assembled and the detection can be achieved without the involvement of complicated procedures. Moreover, the applicability of the method has been demonstrated by detecting PSMA spiked into urine samples.
  • 加载中
    1. [1]

      Juzgado, A.; Soldà, A.; Ostric, A.; Criado, A.; Valenti, G.; Rapino, S.; Conti, G.; Fracasso, G.; Paolucci, F.; Prato, M. J. Mater. Chem. B 2017, 5, 6681.  doi: 10.1039/C7TB01557G

    2. [2]

      Huang, W. F.; Chang, C. L.; Brault, N. D.; Gur, O.; Wang, Z.; Jalal, S. I.; Low, P. S.; Ratliff, T. L.; Pili, R.; Savran, C. A. Lab Chip. 2017, 17, 415.  doi: 10.1039/C6LC01279E

    3. [3]

      Ferraris, D. V.; Shukla, K.; Tsukamoto, T. Curr. Med. Chem. 2012, 19, 1282.  doi: 10.2174/092986712799462658

    4. [4]

      Yang, H. W.; Hua, M. Y.; Liu, H. L.; Tsai, R. Y.; Chuang, C. K.; Chu, P. C.; Wu, P. Y.; Chang, Y. H.; Chuang, H. C.; Yu, K. J.; Pang, S. T. ACS Nano 2012, 6, 1795.  doi: 10.1021/nn2048526

    5. [5]

      Pu, F.; Salarian, M.; Xue, S. H.; Qiao, J. J.; Feng, J.; Tan, S. S.; Patel, A.; Li, X.; Mamouni, K.; Hekmatyar, K.; Zou, J.; Wu, D. Q.; Yang, J. J. Nanoscale 2016, 8, 12668.  doi: 10.1039/C5NR09071G

    6. [6]

      Min, K.; Song, K. M.; Cho, M.; Chun, Y. S.; Shim, Y. B.; Ku, J. K.; Ban, C. Chem. Commun. 2010, 46, 5566.  doi: 10.1039/c002524k

    7. [7]

      Carter, R. E.; Feldman, A. R.; Coyle, J. T. Proc. Natl. Acad. Sci. U. S. A. 1996, 93, 749.  doi: 10.1073/pnas.93.2.749

    8. [8]

      Kamga, I.; Ng, R.; Hosaka, M.; Berkman, C. E. Anal. Biochem. 2002, 310, 125.  doi: 10.1016/S0003-2697(02)00284-1

    9. [9]

      Wang, H. S.; Lin, P. T.; Zhao, S. L.; Li, S. T.; Lu, X.; Liang, H. Chin. J. Chem. 2017, 35, 943.  doi: 10.1002/cjoc.v35.6

    10. [10]

      Yang, L. M.; Liu, B.; Li, N.; Tang, B. Acta Chim. Sinica 2017, 75, 1047.
       

    11. [11]

      Li, M. B.; Tian, S. K.; Wu, Z. K. Chin. J. Chem. 2017, 35, 567.  doi: 10.1002/cjoc.v35.5

    12. [12]

      Li, S. S.; Wang, F. Z. R.; Liu, Y. M.; Cao, Y. Chin. J. Chem. 2017, 35, 591.  doi: 10.1002/cjoc.v35.5

    13. [13]

      Zhu, A.W.; Qu, Q.; Shao, X. L.; Kong, B.; Tian, Y. Angew. Chem., Int. Ed. 2012, 51, 7185.  doi: 10.1002/anie.201109089

    14. [14]

      Zhang, Y. Y.; Wu, M. H.; Wu, M. J.; Guo, L. P.; Cao, L., Wu, H. Y.; Zhang, X. N. Acta Chim. Sinica 2018, 76, 709.
       

    15. [15]

      Ji, G.; Yan, L. L.; Wang, H.; Ma, L.; Xu, B.; Tian, W. J. Acta Chim. Sinica 2016, 74, 917.
       

    16. [16]

      Men, J. Y.; Gao, B. J.; Chen, Z. P.; Yao, L. Acta Chim. Sinica 2012, 70, 2273.
       

    17. [17]

      Wen, Q. S.; Tang, H. W.; Yang, G. M.; Liu, L. B.; Lv, F. T.; Yang, Q.; Wang, S. Acta Chim. Sinica 2012, 70, 2137.
       

    18. [18]

      Elghanian, R.; Storhoff, J. J.; Mucic, R. C.; Letsinger, R. L.; Mirkin, C. A. Science 1997, 277, 1078.  doi: 10.1126/science.277.5329.1078

    19. [19]

      Taton, T. A.; Mirkin, C. A.; Letsinger, R. L. Science 2000, 289, 1757.  doi: 10.1126/science.289.5485.1757

    20. [20]

      Fratoddi, I.; Venditti, I.; Cametti, C.; Russo, M. V. J. Mater. Chem. B 2014, 2, 4204.  doi: 10.1039/C4TB00383G

    21. [21]

      Obare, S. O.; Hollowell, R. E.; Murphy, C. J. Langmuir 2002, 18, 10407.  doi: 10.1021/la0260335

    22. [22]

      Kim, Y.; Johnson, R. C.; Hupp, J. T. Nano Lett. 2001, 1, 165.  doi: 10.1021/nl0100116

    23. [23]

      Zhou, Y.; Wang, S.; Zhang, K.; Jiang, X. Angew. Chem., Int. Ed. 2008, 47, 7454.  doi: 10.1002/anie.v47:39

    24. [24]

      Anderson, M. O.; Wu, L. Y.; Santiago, N. M. Bioorgan. Med. Chem. 2007, 15, 6678.  doi: 10.1016/j.bmc.2007.08.006

    25. [25]

      Feng, D.; Zhang, Y. Y.; Feng, T. T.; Shi, W.; Li, X. H.; Ma, H. M. Chem. Commun. 2011, 47, 10680.  doi: 10.1039/c1cc13975d

    26. [26]

      Miao, X. M.; Cheng, Z. Y.; Li, Z. B.; Wang, P. Biochem. Eng. J. 2017, 117, 21.  doi: 10.1016/j.bej.2016.10.022

    27. [27]

      Sun, C. D.; Shi, W.; Song, Y. C.; Chen, W.; Ma, H. M. Chem. Commun. 2011, 47, 8638.  doi: 10.1039/c1cc12174j

    28. [28]

      Mohan, K. M.; Donavan, K. C.; Arter, J. A.; Penner, R. M.; Weiss, G. A. J. Am. Chem. Soc. 2013, 135, 7761.  doi: 10.1021/ja4028082

    29. [29]

      Li, C. M.; Li, Y. F.; Wang, J.; Huang, C. Z. Talanta 2010, 81, 1339.
       

  • 加载中
    1. [1]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    2. [2]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    3. [3]

      Yongjie ZHANGBintong HUANGYueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247

    4. [4]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    5. [5]

      Liwei Wang Guangran Ma Li Wang Fugang Xu . A Comprehensive Analytical Chemistry Experiment: Colorimetric Detection of Vitamin C Using Nanozyme and Smartphone. University Chemistry, 2024, 39(8): 255-262. doi: 10.3866/PKU.DXHX202312094

    6. [6]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    7. [7]

      Lina Liu Xiaolan Wei Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, 2024, 39(10): 337-343. doi: 10.12461/PKU.DXHX202405112

    8. [8]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    9. [9]

      Yanting HUANGHua XIANGMei PAN . Construction and application of multi-component systems based on luminous copper nanoclusters. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2075-2090. doi: 10.11862/CJIC.20240196

    10. [10]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    11. [11]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    12. [12]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    13. [13]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    14. [14]

      Zian Fang Qianqian Wen Yidi Wang Hongxia Ouyang Qi Wang Qiuping Li . The Test Paper for Metal Ion: A Popular Science Experiment Based on Color Aesthetics. University Chemistry, 2024, 39(5): 108-115. doi: 10.3866/PKU.DXHX202310032

    15. [15]

      Ziliang KANGJiamin ZHANGHong ANXiaohua LIUYang CHENJinping LILibo LI . Preparation and water adsorption properties of CaCl2@MOF-808 in-situ composite moulded particles. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2133-2140. doi: 10.11862/CJIC.20240282

    16. [16]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    17. [17]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    18. [18]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    19. [19]

      Xiaowu Zhang Pai Liu Qishen Huang Shufeng Pang Zhiming Gao Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021

    20. [20]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

Metrics
  • PDF Downloads(8)
  • Abstract views(751)
  • HTML views(169)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return